Skip to main content
Log in

Mycology studies in space

  • Published:
Mycopathologia Aims and scope Submit manuscript

Summary

The postflight phase of the Apollo MEED mycology attempts to identify survival according to exposure to specific quantitative space flight factors, while the second phase of studies identifies qualitative change other than cell survival [57]. Initial changes incurred in space on a fungal cell can be monitored and further examined on return of the fungal species test system to Earth. The postflight studies present a better understanding of the space environmental influences on living cells and a more clear understanding of the fungal species under examination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baublis JA, Volz PA. Fungal microflora of an Antarctic Dry Valley. American Society for Microbiology Abstracts. Q87. 1988; p. 297.

    Google Scholar 

  2. Benevolenskiy VN, Druzhinin YP, Klimenko AS, Malyutina TS. Effect of 660-MeV protons on diploid yeast cells. Atomizdat 1967; 134–46.

  3. Benninghoff WS. Atmospheric particulate matter of plant origin. Proceedings of the Atmospheric Biology Conference, Minneapolis MN. NASA NsG-461, 1964.

  4. Berry D, Rengan K, Volz PA. Cerenkov counting technique for beta particles: Application to tracer studies in biological systems. Phytologia 1981; 49: 499–503.

    Google Scholar 

  5. Berry D, Volz PA. Phosphate uptake in Saccharomyces cerevisiae Hansen wild type and phenotypes exposed to space flight irradiation. Appl envir Microbiol 1979; 38: 751–3.

    Google Scholar 

  6. Cameron RE, Morelli FA, Conrow HP. Survival of microorganisms in desert soil exposed to five years of continuous very high vacuum. NASA TR 1970; 32–1454.

  7. Clark E. New methods probe space flight hazards. Aviation Week 1960; 72: 546–8.

    Google Scholar 

  8. Curtis CR. Response of fungi to diurnal temperature extremes. Nature 1967; 213: 738–9.

    Google Scholar 

  9. DeBusk AG. Experiments for the development of four basic techniques employing the ascomycete Neurospora crassa for use in the BioSatellite experimental flight. Fungal summary report. NASA CR-60946, 1965.

  10. DeSerres FJ. The effect of x-irradiation under anoxia on the frequency and type of recessive lethal mutations at the ad-3A and ad-3B loci of Neurospora crassa. Radiat Res 1968; 35: 524–32.

    Google Scholar 

  11. DeSerres FJ, Miller IR, Smith DB, Kondo DB, Bender MA. The Gemini-XI S-4 space flight irradiation interaction experiment. II. Analysis of survival levels and forward mutation frequencies in Neurospora crassa. Radiat Res 1969; 39: 436–44.

    Google Scholar 

  12. Deskins DC, Volz PA. Phosphoglyceride contents of Rhodotorula rubra and three phenotypes exposed to the lunar environment on the Apollo 16 Microbial Ecology Evaluation Device. Phytologia 1980; 46: 1–4.

    Google Scholar 

  13. Dublin M, Volz PA. Space related research in mycology concurrent with the first decade of manned space exploration. Space Life Sci 1973; 4: 223–30.

    Google Scholar 

  14. Dublin M, Volz PA, Bulmer GS. The antifungal activity of normal and host compromised saliva on space flight fungal phenotypes. Mycopathologia 1974; 54: 499–516.

    Google Scholar 

  15. Hemenway C, Hotchin J, Lorenz P. Survival of various microorganisms shielded with aluminum during rocket and balloon flights and during laboratory exposure to ultraviolet light and x-irradiation. Nature 1965; 206: 442–5.

    Google Scholar 

  16. Hiebel TL, Volz PA. Foreign body reactions induced by fungi irradiated in space. Phytologia 35: 365–72.

  17. Hoover WE, Volz PA. Pigment, perithecial, and enzyme production of fungi exposed to space irradiation. Phytologia 1979; 42: 45–51.

    Google Scholar 

  18. Hotchin J, Lorenz P, Hemenway CL. Survival of terrestrial microorganisms in space at orbital altitudes during Gemini satellite experiments. Life Sciences and Space Res 1967; 6: 108–14.

    Google Scholar 

  19. Hsu YC, Hiser JL, Volz PA. Nuclear behavior in vegetative hyphae of Trichophyton terrestre. Mycopathologia 1974; 53: 69–76.

    Google Scholar 

  20. Hsu YC, Volz PA. Ultrastructural features of meiosis in Chaetomium globosum. Mycopathologia 1975a; 55: 25–7.

    Google Scholar 

  21. Hsu YC, Volz PA. Penetration of Trichophyton terrestre in human hair. Mycopathologia 1975b; 55: 179–83.

    Google Scholar 

  22. Hsu YC, Yu SA, Volz PA. The meiotic configuration of Chaetomium globosum. Mycopathologia 1973a; 50: 145–50.

    Google Scholar 

  23. Hsu YC, Yu SA, Volz PA. The mitotic configuration of Chaetomium globosum. Mycopathologia 1973b; 51: 243–9.

    Google Scholar 

  24. Hubbard JS, Miller AB. Space programs summary. Jet Propulsion Laboratory 1967; 3: 189–92.

    Google Scholar 

  25. Jenkins DW. American space biology. Symposium on the Biosatellite II experiments. Preliminary results. BioScience 1968; 18: 546–8.

    Google Scholar 

  26. Jerger DE, Volz PA. DNA analysis of fungal wild types and select space flight phenotypes. Phytologia 1977; 35: 265–70.

    Google Scholar 

  27. Kennedy MJ, Volz PA. Induced lesions in mice caused by Saccharomyces cerevisiae wild type and selected phenotypes of the Apollo 16 Microbial Ecology Evaluation Device. Phytologia 1980; 46: 1–4.

    Google Scholar 

  28. Kennedy MJ, Volz PA. Influences of ultraviolet light radiation on viability of Saccharomyces cerevisiae recovered from the Apollo 16 Microbial Ecology Evaluation Device. Phytologia 1981; 47: 325–9.

    Google Scholar 

  29. Kennedy MJ, Volz PA. The effect of space flight irradiation on Saccharomyces cerevisiae growth and respiration. FEMS Microbiology Letters (England) 1983; 19: 125–8.

    Google Scholar 

  30. Kovyazin NV, Lukin AA, Parfenov GP. The effect of cosmic flight factors of Vostok 2 on microorganisms. Studies on yeasts of different ploidy. Iskusstvennye Sputniki Zemli, Akad. Nauk S.S.S.R. 1962; 13: 123–9.

    Google Scholar 

  31. Kozlova VK, Zhukova AI. Viability of microorganisms under conditions of extreme dryness, irradiation, and temperatures approximating those on Mars. Mikrobiologiya 1966; 34: 508–18.

    Google Scholar 

  32. Lorenz PR, Hotchin J, Markusen AS, Orlob GB, Hemenway C, Hallgren DS. Survival of microorganisms in space. Results of Gemini IXa, Gemini XII and Agena VIII satellite borne exposure and collection experiments. Space Life Sci 1968; 1: 118–30.

    Google Scholar 

  33. Lozina-Lozinskiy LK. Cytological studies and space biology. Probl Space Biol 1962; 2: 44–51.

    Google Scholar 

  34. Madres JW. Survival of selected microorganisms exposed to high ultraviolet flux equivalent to the Mars surface. NASA TM X-55853, 1966.

  35. Nefedov YG, Grigor'yev YG, Kovalev YY. Travels in the radiation belts of the Earth. Pravda 1966; 3-6: 1.

    Google Scholar 

  36. Sawyer RT, Deskins DC, Volz PA. Phosphoglyceride contents of Trichophyton terrestre and a phenotype selected from Apollo 16 MEED. Appl Microbiol 1975a; 29: 658–62.

    Google Scholar 

  37. Sawyer RT, Deskins DC, Volz PA. Phospholipids of Trichophyton terrestre and one phenotype selected from the Apollo 16 MEED. Amer Soc Microbiol Abstr 1975b; F43, p. 92.

    Google Scholar 

  38. Siegel SM, Halpern LA, Ginmarrow C, Renwick G, Davis G. Martian biology. The experimentalists approach. Nature 1963; 197: 329–31.

    Google Scholar 

  39. Simons DG. Observations in high altitude, sealed cabin balloon flights. Air Univ Quart Rev 1958; 10: 65–88.

    Google Scholar 

  40. Simons DG, DeBusk AG, Hewitt JE. Primary cosmic radiation. Presentation at the Aerospace Medical Association Annual Meetings, Chicago IL, 1960.

  41. Veselenak JM, Volz PA. Utilization of keratinophilic material by selected Trichophyton terrestre space flight phenotypes. Mycopathologia 1977; 60: 87–97.

    Google Scholar 

  42. Volz PA, The BSTTP Areas fungal experiment. The morphological changes found in space flown Schizophyllum commune. (A study publication included in the BioSpace Technology Training Program, NASA-Wallops), 1968.

  43. Volz, PA. Annual Report I of the MEED Mycology. NASA Manned Spacecraft Center. NAS 9-11562, 1972; 65 pp.

  44. Volz PA. Mycological studies housed in the Apollo 16 Microbial Ecology Evaluation Device. In: NASA TMX Proceedings of the Microbial Response to Space Environment Symposium MSC-07856, 1973a; p. 121–135.

  45. Volz PA. Annual Report II of the MEED Mycology. NASA Johnson Space Center. NAS 9-11562; 1973b; 130 pp.

  46. Volz PA. The Apollo 16 Microbial Ecology Evaluation Device mycology studies. 1971–1974. National Aeronautics and Space Administration. NAS 9-11562, 1974a; 124 pp.

  47. Volz PA. Ann Report III of the MEED Mycology. NASA Johnson Space Center. NAS 9-11562. 1974b; 124 pp.

  48. Volz PA. Apollo 16 MEED Mycology. Phytologia 1975; 31: 193–225.

    Google Scholar 

  49. Volz PA. Postflight studies on fungal phenotypes irradiated in space. Kosmicheskie Issledovaniya 1979; 17: 920–6.

    Google Scholar 

  50. Volz PA. Postflight studies on fungal phenotypes irradiated in space. Cosmic Research. Plenum Publishing Corporation 1980; p. 762–769.

  51. Volz PA. Sending fungi into deep space. Expl 1982; 66: 66–70.

    Google Scholar 

  52. Volz PA, Dublin M. Filamentous fungi exposed to selected ultraviolet light parameters of space. Space Life Sci 1973; 4: 402–14.

    Google Scholar 

  53. Volz PA, Hsu YC, Hiser JL, Veselenak JM, Jerger DE. The Microbial Ecology Evaluation Device mycology space flight studies of Apollo 16. Mycopathologia 1974; 54: 221–33.

    Google Scholar 

  54. Volz PA, Jerger DE. Fungal growth on fabrics selected for space flight. Amer Fabr 1973; 98: 75–6.

    Google Scholar 

  55. Wurzburger AJ, Volz PA. Growth sensitivities to drugs of fungal phenotypes exposed to deep space irradiation. Phytologia 1976; 33: 63–77.

    Google Scholar 

  56. Zhukova A, Kozlova VK. Resistance of certain strains of microorganisms to ultraviolet rays. Mikrobiol 1966; 35: 302–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Presented as part of the Everett S. Beneke Symposium in Mycology, May 27, 1988.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volz, P.A. Mycology studies in space. Mycopathologia 109, 89–98 (1990). https://doi.org/10.1007/BF00436789

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00436789

Keywords

Navigation