Skip to main content
Log in

Killer factor interference in mixed opportunistic yeast cultures

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The interaction of the killer yeast Pichia anomala UP 25F with the killer toxin-sensitive clinical isolate Candida albicans UCSC 10S and its natural toxin-resistant mutant derivative C. albicans UCSC 10R were studied under various conditions. A differential inhibition was shown to occur in vitro at pH and temperature values, which are not encountered in vivo, only by using preformed killer toxin, since antagonism due to yeast growth proved to be predominant on the killer effect. Under adverse growth conditions, the P. anomala killer yeast proved to be able to produce an anatoxin antigenically related to the active or heat inactivated killer toxin. These findings suggest that killer toxins may not function as potential virulence factors in the competition between the opportunistic killer yeast P. anomala and sensitive microorganisms for colonization in the course of natural human infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polonelli L, Morace G. Reevaluation of the yeast killer phenomenon. J Clin Microbiol 1986; 24: 866–69.

    CAS  PubMed  Google Scholar 

  2. Somers JM, Bevan EA. The inheritance of the killer character in yeast. Genet Res 1969; 13: 71–83.

    Article  CAS  PubMed  Google Scholar 

  3. Tipper DJ, Bostian KA. Double-stranded ribonucleic acid killer systems in yeasts. Microbiol Rev 1984; 48: 125–56.

    CAS  PubMed  Google Scholar 

  4. Bussey H. Effects of yeast killer factor on sensitive cells. Nature New Biol 1972; 235: 73–5.

    CAS  PubMed  Google Scholar 

  5. Hammond JRM, Eckersley KW. Fermentation properties of brewing yeast with killer character. J Inst Brewing 1984; 90: 167–77.

    CAS  Google Scholar 

  6. Naumov GI, Tyurina LV, Bur'yan NI, Naumova TI. Wine making, an ecological niche of type K2 killer Saccharomycetes. Biologicheski Nauki 1973; 16: 103–7.

    Google Scholar 

  7. Ganter PF, Starmer WT. Killer factor as a mechanism of interference competition in yeasts associated with cacti. Ecology 1992; 73: 54–67.

    Article  Google Scholar 

  8. Starmer WT, Ganter PF, Aberdeen V, Lachance M-A, Phaff HJ. The ecological role of killer yeasts in natural communities of yeasts. Can J Microbiol 1987; 33: 783–96.

    Article  CAS  PubMed  Google Scholar 

  9. Starmer WT, Ganter PF, Aberdeen V. Geographic distribution and genetics of killer phenotypes for the yeast Pichia kluyveri across the United States. Appl Environ Microbiol 1992; 58: 990–7.

    CAS  PubMed  Google Scholar 

  10. Braude AI, Siemienski JS. The influence of bacteriocins on resistance to infection by Gram-negative bacteria. II. Colicin action, transfer of colicinogeny, and transfer of antibiotic resistance in urinary infections. J Clin Invest 1968; 47: 1763–73.

    CAS  PubMed  Google Scholar 

  11. Chao L, Levin BR. Structured habitats and evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci USA 1981; 78: 6324–28.

    Article  CAS  PubMed  Google Scholar 

  12. Halbert SP, Sonn C, Swick L. Mixed bacterial infections in relation to antibiotic activities. I. Clostridium septicum-Micrococcus infections. J Immunol 1954; 73: 169–79.

    CAS  PubMed  Google Scholar 

  13. Halbert PS, Locatcher-Khorazo D, Sonn-Kazar C, Swick L. Further studies on the incidence of antibiotic-producing microorganisms of the ocular flora. AMA Arch Ophth 1957; 58: 66–76.

    CAS  Google Scholar 

  14. Ikari NS, Kenton DM, Young VM. Interaction in the germfree mouse intestine of colicinogenic and colicin-sensitive microorganisms (33773). Proc Soc Exptl Biol Med 1969; 130: 1280–4.

    CAS  Google Scholar 

  15. Ajello L. The medical mycological iceberg. In: Al-Doory Y, ed. The Epidemiology of Human Mycotic Diseases. Springfield: C.C. Thomas, 1975: 290–306.

    Google Scholar 

  16. Dickensheets DL. Hansenula anomala infection. Rev Infect Dis 1989; 11: 507–8.

    CAS  PubMed  Google Scholar 

  17. Drouhet E, Dupont B. Mycoses in AIDS patients. An overview. In: Vanden Bossche H, Mackenzie DWR, Cauwenbergh G, Van Custem J, Drouhet E, Dupont B, eds. Mycoses in AIDS Patients. New York: Plenum Press, 1990: 27–53.

    Google Scholar 

  18. Haron E, Anaissie E, Dumphy F, McCredie K, Fainstein V. Hansenula anomala fungemia. Rev Infect Dis 1988; 10: 1182–6.

    CAS  PubMed  Google Scholar 

  19. Klein AS, Tortora GT, Malowitz R, Greene WH. Hansenula anomala, a new fungal pathogen. Arch Int Med 1988; 148: 1210–3.

    Article  CAS  Google Scholar 

  20. Munoz Leoni M-EG, Berenguer J, De Quiros JCL, Bouza C. Catheter-related fungemia by Hansenula anomala. Arch Int Med 1989; 149: 709–13.

    Article  Google Scholar 

  21. Qadri SM, Al-Dayel F, Strampfer MJ, Chuna BA. Urinary tract infection caused by Hansenula anomala. Mycopathologia 1988; 104: 99–101.

    CAS  PubMed  Google Scholar 

  22. Polonelli L, Conti S, Gerloni M, Campani L, Pettoello Mantovani M, Morace G. Production of yeast killer toxin in experimentally infected animals. Mycopathologia 1990; 110: 169–75.

    Article  CAS  PubMed  Google Scholar 

  23. Meers JL. Growth of bacteria in mixed cultures. CRC Crit Rev Microbiol 1973; 2: 139–82.

    Article  CAS  Google Scholar 

  24. Morace G, Archibusacci C, Sestito M, Polonelli L. Strain differentiation of pathogenic yeasts by the killer system. Mycopathologia 1984; 84: 81–5.

    Article  CAS  PubMed  Google Scholar 

  25. Polonelli L, Morace G. Production and characterization of yeast killer toxin monoclonal antibodies. J Clin Microbiol 1987; 25: 460–2.

    CAS  PubMed  Google Scholar 

  26. Polonelli L, Conti S, Campani L, Gerloni M, Morace G, Chezzi C. Differential toxinogenesis in the genus Pichia detected by an anti-yeast killer toxin monoclonal antibody. Antonie van Leeuwenhoek 1991; 59: 139–45.

    CAS  PubMed  Google Scholar 

  27. Scherer S, Stevens DA. A Candida albicans dispersed, repeated gene family and its epidemiologic applications. Proc Natl Acad Sci USA 1988; 85: 1452–6.

    Article  CAS  PubMed  Google Scholar 

  28. Sullivan D, Bennett D, Henman M, Harwood P, Flint S, Mulcahy F, Shanley D, Coleman D. Oligonucleotide fingerprinting of isolates of Candida species other than C. albicans and of atypical Candida species from human immunodeficiency virus-positive and AIDS patients. J Clin Microbiol 1993; 31: 2124–33.

    CAS  PubMed  Google Scholar 

  29. Coleman DC, Bennet DE, Sullivan DJ, Gallagher PJ, Henman MC, Shanley DB, Russell RJ. Oral Candida in HIV infection and AIDS: New perspectives/ New approaches. Crit Rev Microbiol 1993; 19: 61–82.

    Article  CAS  PubMed  Google Scholar 

  30. Sullivan DJ, Westerneng TJ, Haynes KA, Bennett DE, Coleman DC. Candida dublinensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology 1995; 141: 1507–21.

    Article  CAS  PubMed  Google Scholar 

  31. Gallagher P, Bennett D, Henman M, Russell R, Flint S, Shanley D, Coleman D. Reduced azole susceptibility of oral isolates of Candida albicans from HIV-positive patients and a derivative exhibiting colony morphology variation. J Gen Microbiol 1992; 138: 1901–11.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conti, S., Cantelli, C., Gerloni, M. et al. Killer factor interference in mixed opportunistic yeast cultures. Mycopathologia 135, 1–8 (1996). https://doi.org/10.1007/BF00436568

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00436568

Key words

Navigation