Skip to main content
Log in

ATPase and cytochrome oxidase activities at the polar organelle in swarm cells of Sphaerotilus natans: an ultrastructural study

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The polar organelle of bacteria presumably is part of the flagellar apparatus. In order to characterize this structure, cytochemical studies on Sphaerotilus natans have been performed.

Marked ATPase activity is associated with the inner boundary layer and central layer of this organelle. The spaces between the boundary layers and the central layer of the polar organelle which are traversed by fine fibrilles are positive for reactions with diaminobenzidine. This indicates cytochrome oxidase activity.

S. natans possesses a ribbon-like, helically shaped polar organelle which is divided concomitantly with cell fission, possibly explaining inheritance of this structure and of the flagellar apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abram D (1965) Electron microscope observations in intact cells, protoplasts, and the cytoplasmic membrane of Bacillus stearothermophilus. J Bacteriol 89:855–873

    Google Scholar 

  • Anderson WA (1970) The localization of cytochrome c oxidase activity during mitochondrial specialization in spermiogenesis of prosobranch snails. J Histochem Cytochem 18:201–210

    Google Scholar 

  • Berg HC, Khan S (1983) A model for the flagellar rotary motor. In: Sund H, Veeger C (eds) Mobility and recognition in cell biology. Walter de Gruyter, Berlin New York, pp 485–497

    Google Scholar 

  • Block SM, Berg HC (1984) Successive incorporation of forcegenerating units in the bacterial rotary motor. Nature 309:470–472

    Google Scholar 

  • Brodie AF, Gutnick DL (1972) Electron transport and oxidative phosphorylation in microbial systems. In: King TE, Klingenberg M (eds) Electron and coupled energy transfer in biological systems, vol 1B. Marcel Dekker, New York, pp 599–681

    Google Scholar 

  • Cohen-Bazire G, London J (1967) Basal organelles of bacterial flagella. J Bacteriol 94:458–565

    Google Scholar 

  • Coulton JW, Murray RGE (1978) Cell envelop associations of Aquaspirillum serpens flagella. J Bacteriol 136:1037–1049

    Google Scholar 

  • Dulbecco R, Vogt M (1954) Plaque formation and isolation of pure lines with Poliomyolitis viruses. J exp Med 99:167–182

    Google Scholar 

  • Eisenbach M, Adler J (1981) Bacterial cell envelops with functional flagella. J Biol Chem 256:8807–8814

    Google Scholar 

  • Hayat MA (1972) Basic electron microscopy techniques. Van Nostrand Reinhold Co., New York Cincinnati Toronto London Melbourne

    Google Scholar 

  • Hickman DD, Frenkel AW (1965) Observations on the structure of Rhodospirillum rubrum. J Cell Biol 25/Mitosis: 279–291

  • Hinkle PC, McCarty, RE (1978) How cells make ATP. Sci Amer 238:104–123

    Google Scholar 

  • Hoeniger JFM, Tauschel H-D, Stokes JL (1973) The fine structure of Sphaerotilus natans. Can J Microbiol 19:309–313

    Google Scholar 

  • Keeler RF, Ritchie AE, Bryner JH, Elmore J (1966) The preparation and characterization of cell walls and the preparation of flagella of Vibrio fetus. J Gen Microbiol 43:439–454

    Google Scholar 

  • Kushnarev VM, Smirnova TA, Dudenkova LG (1970) Electron microscopy of adenosine triphosphatase in Escherichia coli cells. Can J Microbiol 16:449–453

    Google Scholar 

  • Macnab RM (1983) Bacterial mobility: energization and switching of the flagellar motor. In: Sund H, Veeger C (eds) Mobility and recognition in cell biology. Walter de Gruyter, Berlin New York, pp 499–516

    Google Scholar 

  • Macnab RM (1984) The bacterial flagellar motor. TIBS 9:185–188

    Google Scholar 

  • Mitchell P (1984) Bacterial flagellar motors and osmoelectric molecular rotation by an axially transmembrane well and turnstile mechanism. FEBS Letters 176:287–294

    Google Scholar 

  • Muñoz E (1982) Polymorphism and conformational dynamics of F1-ATPase from bacterial membranes, a model for the regulation of these enzymes on the basis of molecular plasticity. Biochim Biophys Acta 650:233–265

    Google Scholar 

  • Muñoz E, Freer JH, Ellar DJ, Salton MRJ (1968) Membrane-associated ATPase activity from Micrococcus lysodeikticus. Biochim Biophys Acta 150:531–533

    Google Scholar 

  • Muñoz E, Salton MRJ, Ng MH, Schor MT (1969) Membrane adenosine triphosphatase of Micrococcus lysodeikticus. Purification, properties of the “soluble” enzyme and properties of the membrane-bound enzyme. Eur J Biochem 7:490–501

    Google Scholar 

  • Murray RGE, Birch-Andersen A (1963) Specialized structure in the region of the flagella tuft in Spirillum serpens. Can J Microbiol 9:393–401

    Google Scholar 

  • Remsen CC, Watson CW, Waterbury JB, Trüper HG (1968) Fine structure of Ectothiorhodospira mobilis Pelsh. J Bacteriol 95:2374–2392

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electronopaque stain in electron microscopy. J Cell Biol 17:208–212

    Google Scholar 

  • Ritchie AE, Keeler RF, Bryner JH (1966) Anatomical features of Vibrio fetus: electron microscopic survey. J Gen Microbiol 43:427–438

    Google Scholar 

  • Ryter A, Kellenberger E, Birch-Andersen A, Maaløe O (1958) Etude au microscope désoxyribonucléique. I. Les nucléoides des bactéries en croissance active. Z Naturforsch 13b:597–605

    Google Scholar 

  • Seligman AM, Plapinger RE, Wasserkrug HL, Deb C, Hanker JS (1967) Ultrastructural demonstration of cytochrome oxidase activity by the Nadi reaction with osmiophilic reagents. J Cell Biol 34:787–800

    Google Scholar 

  • Seligman AM, Karnovsky MJ, Wasserkrug HL, Hanker JS (1968) Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB). J Cell Biol 38:1–14

    Google Scholar 

  • Tauschel H-D, Drews G (1969a) Der Geißelapparat von Rhodopseudomonas palustris. I. Untersuchungen zur Feinstruktur des Polorganells. Arch Mikrobiol 66:166–179

    Google Scholar 

  • Tauschel H-D, Drews G (1969b) Der Geißelapparat von Rhodopseudomonas palustris. II. Entstehung und Feinstruktur der Geißel-Basalkörper. Arch Mikrobiol 66:180–194

    Google Scholar 

  • Vaituzis Z (1973) Localization of adenosine triphosphate activity in motile bacteria. Can J Microbiol 19:1265–1267

    Google Scholar 

  • Vaituzis Z, Doetsch RN (1969) Relationship between cell wall, cytoplasmic membrane, and bacterial motility. J Bacteriol 100:512–521

    Google Scholar 

  • Wachstein M, Meisel E (1957) Histochemistry of hepatic phosphatase at a physiological pH. Am J clin Pathol 27:13–23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. G. Drews on occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tauschel, HD. ATPase and cytochrome oxidase activities at the polar organelle in swarm cells of Sphaerotilus natans: an ultrastructural study. Arch. Microbiol. 141, 303–308 (1985). https://doi.org/10.1007/BF00428841

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00428841

Key words

Navigation