Skip to main content
Log in

Transversion of cell polarity from bi- to multipolarity is the mechanism determining multiple spore formation in Anaerobacter polyendosporus PS-1T

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The number of spores formed in a single cell of Anaerobacter polyendosporus PS-1T is significantly influenced by the composition of nutrient media. Depending on carbohydrate concentration in synthetic medium, the number of spores may vary from one or two to as many as five to seven. Investigation of spore formation process by fluorescence and electron microscopy revealed that on media with 0.5–1.0% glucose or galactose most of vegetative cells remained rod-shaped after cessation of cell division in the culture. The nucleoids of these cells were localized at cell poles close to the polar site of the cytoplasmic membrane. Fore-spores were formed at one or both of these poles. A satellite nucleoid (operator) was observed close to each forespore. In the variant with bipolar organization of mother cells, only one or two spores per cell were formed. In the second variant of culture development, when the cells were grown at low galactose concentrations (0.1–0.3%), most of vegetative cells increased in volume and became oval or spherical after cessation of cell division in the culture. Epifluorescence microscopy with nucleic acid-specific fluorochromes (DAPI and acridine orange) revealed the presence of multiple (six to nine) nucleoids in these cells. The nucleoids were located at the cell periphery in close contact with the cytoplasmic membrane. These nucleoids became the centers (poles) for forespore formation. Thus, in the early stationary phase transversion from bipolar to multipolar cells occurred. Cessation of cell division combined with continuing replication of the nucleoids resulted in formation on multinuclear cells. The multiplicity of nucleoides and multipolarity of these cells were prerequisites determining endogenous polysporogenesis, occurring as synchronous formation of three to seven twin spores in many of the oval and spherical cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chatton, E. and Pérard, C., Schizophytes du caecum de cobaye, “Metabacterium polyspora” n.g., n.sp, Compendens Rendus Hebdomadaires Societe de Biology (Paris), 1913, vol. 74, pp. 1232–1234.

    Google Scholar 

  2. Krasil’nikov, N.A., Microbes from the guinea-pig intestine: Oscillospira guilliermondii and Metabacterium polyspora, Mikrobiol. Zh., 1928, vol. 6, p. 247.

    Google Scholar 

  3. Duda, V.I., Lebedinsky, A.V., Mushegjan, M.S., and Mitjushina, L.L., A new anaerobic bacterium, forming up to five endospores per cell—Anaerobacter polyendosporus gen. et spec. nov, Arch. Microbiol., 1987, vol. 148, pp. 121–127.

    Article  CAS  Google Scholar 

  4. Siunov, A., Nikitin, D., Suzina, N., Dmitriev, V., Kuzmin, N., and Duda, V., Phylogenetic status of Anaerobacter polyendosporus, an anaerobic, polysporogenic bacterium, Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 1119–1124.

    Article  PubMed  CAS  Google Scholar 

  5. Angert, E.R., Brooks, A.E., and Pace, N.R., Phylogenetic analysis of Metabacterium polyspora: clues to the evolutionary origin of daughter cell production in Epulopiscium species, the largest bacteria, J. Bacteriol., 1996, vol. 178, pp. 1451–1456.

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Duda, V.I., Suzina, N.E., Severina, L.O., Dmitriev, V.V., and Karavaiko, G.I., Formation of flat lamellar intramembrane lipid structures in microorganisms, J. Membr. Biol., 2001, vol. 180, pp. 33–48.

    Article  PubMed  CAS  Google Scholar 

  7. Duda, V.I., Suzina, N.E., and Dmitriev, V.V., Ultra-structural organization of the cytoplasmic membrane of Anaerobacter polyendosporus as evidenced by electron microscopic cryofractography, Microbiology (Moscow), 2001, vol. 70, no. 6. pp. 657–666.

    Article  CAS  Google Scholar 

  8. Pfennig, N., Anreicherungskulturen für rote und grüne Schwefelbakterien, Zbl. Bakt. I. Abt. Orig. Suppl. 1, 1965, pp. 179–189.

    Google Scholar 

  9. Pfennig, N. and Lippert, K.D., Uber das Vitamin B12-Bedürfnis phototropher Schwefelbakterien, Arch. Microbiol., 1966, vol. 55, pp. 245–256.

    CAS  Google Scholar 

  10. Hungate, R.E., The Rumen and Its Microbes, New York-London: Academic Press, 1966.

    Google Scholar 

  11. Reynolds, E., The use of lead citrate at high pH as an electron opaque stain in electron microscopy, J. Cell Biol., 1963, vol. 17, pp. 208–212.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Janel, S.R., Hector, J.S.R., and Johnson, A.R., Determination of genome size of Pseudomonas aeruginosa by PFGE: analysis of restriction fragments, Nucleic Acids Res., 1990, vol. 18, pp. 3171–3174.

    Article  Google Scholar 

  13. Duda, V.I., Cytological peculiarities of spore-forming bacteria, Usp. Mikrobiol., 1982, no. 17, pp. 87–116.

    Google Scholar 

  14. Labbe, R.G. and Duncan, C.L. Synthesis of deoxyribonucleic acid, ribonucleic acid, and protein during sporulation of Clostridium perfringens, J. Bacteriol., 1976, vol. 125, no. 2, pp. 444–452.

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Goehring, N.V. and Grill, S.W., Cell polarity: mechanochemical patterning, Trends Cell Biol., 2013, vol. 23, no. 2, pp. 72–80.

    Article  PubMed  CAS  Google Scholar 

  16. Shapiro, L., McAdams, H.H., and Losick, R., Generating and exploiting polarity in bacteria, Science, 2002, vol. 298, pp. 1942–1945.

    Article  PubMed  CAS  Google Scholar 

  17. Hamamoto, T., Takashina, T., Grant, D.W., and Horikoshi, K., Asymmetric cell division of a triangular halophilic archaebacterium, FEMS Microbiol. Lett., 1988, vol. 56, pp. 221–224.

    Article  Google Scholar 

  18. Ben-Yehuda, S., Rudner, D.Z., and Losick, R., Rac, A., a bacterial protein that anchors chromosomes to the cell poles, Science, 2003, vol. 299, pp. 532–536.

    Article  PubMed  CAS  Google Scholar 

  19. Jacobs, C., Domian, I.J., Maddock, J.R., and Shapiro, L., Cell cycle-dependent polar localization of an essential bacterial histidine kinase that controls DNA replication and cell division, Cell, 1999, vol. 97, no. 1, pp. 111–120.

    Article  PubMed  CAS  Google Scholar 

  20. Mendell, J.E., Clements, K.D., Choat, J.H., and Angert, E.R., Extreme polyploidy in a large bacterium, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, p. 6730–6734.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Duda.

Additional information

Original Russian Text © V.I. Duda, N.E. Suzina, V.N. Polivtseva, A.B. Gafarov, A.P. Shorokhova, A.V. Machulin, 2014, published in Mikrobiologiya, 2014, Vol. 83, No. 5, pp. 575–582.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duda, V.I., Suzina, N.E., Polivtseva, V.N. et al. Transversion of cell polarity from bi- to multipolarity is the mechanism determining multiple spore formation in Anaerobacter polyendosporus PS-1T . Microbiology 83, 608–615 (2014). https://doi.org/10.1134/S0026261714050105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261714050105

Keywords

Navigation