Skip to main content
Log in

Isolation and characterization of Methanocorpusculum parvum, gen. nov., spec. nov., a new tungsten requiring, coccoid methanogen

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A new mesophilic, monotrichously flagellated methane-producing coccus of ≦1μm in diameter was isolated from an anaerobic sour whey digester, originally inoculated with sewage sludge. Growth and methane production were observed with H2/CO2, formate and — less effectively — with 2-propanol/CO2. The isolate grew at temperatures between 15° C and 45° C with the optimum at around 37° C. Acetate, yeast extract and tungstate were required in the medium. Clarified rumen fluid stimulated growth.

The DNA of the new methanogen has a G+C content of 48.5 mol%. Comparative 16 S rRNA oligonucleotide cataloguing allows to define the new isolate as a member of a new genus of the order Methanomicrobiales. Further evidence for this is provided by the antigenic crossreactivity with anti-S probes and by metabolic features.

Because of its small size the new methanogen is named Methanocorpusculum parvum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aranki A, Freter R (1972) Use of anaerobic glove boxes for the cultivation of strictly anaerobic bacteria. Am J Clin Nutr 25:1329–1334

    Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: Reevaluation of a unique biological group. Microbiol Rev 43:260–296

    Google Scholar 

  • Birnboim C, Doly J (1979) Rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Blaut M, Gottschalk G (1984) Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri. Eur J Biochem 141:217–222

    Google Scholar 

  • Blaut M, Müller V, Fiebig K, Gottschalk G (1985) Sodium ions and an energized membrane required by Methanosarcina barkeri for the oxidation of methanol to the level of formaldehyde. J Bacteriol 164:95–101

    Google Scholar 

  • Bray GA (1960) A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Anal Biochem 1:279–285

    Google Scholar 

  • Burke KA, Calder K, Lascelles J (1980) Effects of molybdenum and tungstate on induction of nitrate reductase and formate dehydrogenase in wild type and mutant Paracoccus denitrificans. Arch Microbiol 126:155–159

    Google Scholar 

  • Conway de Macario E, Macario AJL, Wolin MJ (1982a) Antibody analysis of relationships among methanogenic bacteria. J Bacteriol 149:316–319

    Google Scholar 

  • Conway de Macario E, Macario AJL, Wolin MJ (1982b) Specific antisera and immunological procedures for characterization of methanogenic bacteria. J Bacteriol 149:320–328

    Google Scholar 

  • Conway de Macario E, Macario AJL, Jovell RJ (1983) Quantitative slide micro-immunoenzymatic assay (micro SIA) for antibodies to particulate and non particulate antigens. J Immunol Meth 59:93–47

    Google Scholar 

  • Corder RE, Hook LA, Larkin JM, Frea JI (1983) Isolation and characterization of two new methane producing cocci: Methanogenium olentangyi, sp. nov., and Methanococcus deltae, sp. nov. Arch Microbiol 134:28–32

    Google Scholar 

  • Diekert GD, Weber B, Thauer RK (1980) Nickel dependence of factor F430 content in Methanobacterium thermoautotrophicum. Arch Microbiol 127:273–278

    Google Scholar 

  • Fox GE, Pechman KR, Woese CR (1977) Comparative cataloguing of 16 S ribosomal ribonucleic acid: molecular approach to procaryotic systematics. Int J Syst Bacteriol 27:44–57

    Google Scholar 

  • Graf EG, Thauer RK (1981) Hydrogenase from Methanobacterium thermoautotrophicum, a nickel-containing enzyme. FEBS Lett 136:165–169

    Google Scholar 

  • Hammel KE, Cornell KL, Diekert GB, Thauer RK (1984) Evidence for a nickel-containing carbon monoxide dehydrogenase in Methanobrevibacter arboriphilicus. J Bacteriol 157:975–978

    Google Scholar 

  • Huser BA, Wuhrmann K, Zehnder AJB (1982) Methanothrix soehngenii gen. nov., spec. nov., a new acetotrophic, non hydrogen oxidizing methane bacterium. Arch Microbiol 132:1–9

    Google Scholar 

  • Jones JB, Stadtman TC (1977) Methanococcus vannielii: Culture and effects of selenium and tungsten on growth. J Bacteriol 130:1404–1406

    Google Scholar 

  • Jones JB, Stadtman TC (1981) Selenium-dependent and selenium-independent formate dehydrogenase of Methanococcus vannielii. J Biol Chem 256:656–663

    Google Scholar 

  • Keltjens JT, van der Drift (1986) Electron transfer reactions in methanogens. FEMS Microbiol Rev 39:259–303

    Google Scholar 

  • König H, Stetter KO (1982) Isolation and characterization of Methanolobus tindarius sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt I Orig C 3:478–490

    Google Scholar 

  • Kühn W, Gottschalk G (1983) Characterization of the cytochromes occurring in Methanosarcina species. Eur J Biochem 135:89–94

    Google Scholar 

  • Kühn W, Fiebig K, Walther R, Gottschalk G (1979) Presence of a cytochrome b 559 in Methanosarcina barkeri. FEBS Lett 105:271–274

    Google Scholar 

  • Kühn W, Fiebig K, Hippe H, Mah RA, Huser BA, Gottschalk G (1983) Distribution of cytochromes in methanogenic bacteria. FEMS Microbiol Lett 20:407–410

    Google Scholar 

  • Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118

    Google Scholar 

  • McGill TJ, Jurka J, Sobieski JM, Pickett MH, Woese CR, Fox GE (1986) Characteristic archaebacterial 16 S rRNA oligonucleotides. Syst Appl Microbiol 7:194–197

    Google Scholar 

  • Miller TL, Wolin MJ (1985) Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch Microbiol 141:116–122

    Google Scholar 

  • Paynter MJB, Hungate RE (1968) Characterization of Methanobacterium mobilis, sp. nov., isolated from bovine rumen. J Bacteriol 95:1943–1951

    Google Scholar 

  • Rivard CJ, Henson JM, Thomas MV, Smith PH (1983) Isolation and characterization of Methanomicrobium paynteri sp. nov., a mesophilic methanogen isolated from marine sediments. Appl Environ Microbiol 46:484–490

    Google Scholar 

  • Romesser JA, Wolfe RS, Mayer F, Spiess E, Walther-Mauruschat A (1979) Methanogenium, a genus of marine methanogenic bacteria and characterization of Methanogenium cariaci spec. nov. and Methanogenium marisnigri spec. nov. Arch Microbiol 121:147–153

    Google Scholar 

  • Scherer P, Sahm H (1981) Effect of trace minerals and vitamins on the growth of Methanosarcina barkeri. Acta Biotechnol 1:57–65

    Google Scholar 

  • Schönheit P, Moll J, Thauer RK (1979) Nickel, cobalt and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch Microbiol 123:105–107

    Google Scholar 

  • Scott RH, Sperl GT, DeMoss JA (1979) In vitro incorporation of molybdate into demolybdo proteins in Escherichia coli. J Bacteriol 137:719–726

    Google Scholar 

  • Sowers KR, Ferry FG (1985) Trace metal and vitamin requirements of Methanococcoides methylutens grown with trimethylamine. Arch Microbiol 142:148–151

    Google Scholar 

  • Sowers KR, Johnson JL, Ferry JG (1984) Phylogenetic relationship among the methylotrophic methane-producing bacteria and emendation of the family Methanosarcinaceae. Int J Syst Bacteriol 34:444–450

    Google Scholar 

  • Stackebrandt E, Woese CR (1981) The evolution of prokaryotes. In: Carlile MJ, Collins JF, Moseley BEB (eds) Molecular and cellular aspects of microbial evolution (Society for General Microbiology Symposium 32). Cambridge, Cambridge University Press, pp 1–31

    Google Scholar 

  • Stackebrandt E, Seewaldt E, Ludwig W, Schleifer KH, Huser BA (1982) The phylogenetic position of Methanothrix soehngenii elucidated by a modified technique of sequencing oligonucleotides from 16 S rRNA. Zentralbl Bakt Hyg, I. Abt Orig C 3:90–100

    Google Scholar 

  • Stackebrandt E, Ludwig W, Fox GE (1985) 16 S ribosomal RNA oligonucleotide cataloguing. In: Gottschalk G (ed) Methods in microbiology. Academic Press, London, pp 75–107

    Google Scholar 

  • Van Bruggen JJA, Zwart KB, Hermans JGF, Van Hove EM, Stumm CK, Vogels GD (1986) Isolation and characterization of Methanoplanus endosymbiosum sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt. Arch Microbiol 144:367–374

    Google Scholar 

  • Wei-Mei Ching, Wittwer AJ, Lin Tsai, Stadtman TC (1984) Distribution of two selenonucleotides among the selenium containing tRNAs from Methanococcus vannielii. Proc Natl Acad Sci USA 81:57–60

    Google Scholar 

  • Whitman WB, Wolfe RS (1980) Presence of nickel in factor F430 from Methanobacterium bryantii. Biochem Biophys Res Common 92:1196–1201

    Google Scholar 

  • Widdel F (1986) Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl Environ Microbiol 51:1056–1062

    Google Scholar 

  • Wildenauer FX, Winter J (1985) Anaerobic digestion of high-strength acidic whey in a pH controlled up-flow anaerobic fixed film loop reactor. Appl Microbiol Biotechnol 22:367–372

    Google Scholar 

  • Wildgruber G, Thomm M, König H, Ober K, Ricchiuto T, Stetter KO (1982) Methanoplanus limicola, a plate-shaped methanogen representing a novel family, the Methanoplanaceae. Arch Microbiol 132:31–36

    Google Scholar 

  • Winter J (1980) Glucose fermentation to methane and CO by defined mixed cultures. Zentralbl Bakt Hyg I. Abt C 1:201–214

    Google Scholar 

  • Winter J, Lerp C, Zabel HP, Wildenauer FX, König H, Schindler F (1984) Methanobacterium wolfei, sp. nov., a new tungstenrequiring, thermophilic, autotrophic methanogen. System Appl Microbiol 5:457–466

    Google Scholar 

  • Yamazaki S (1982) A selenium-containing hydrogenase from Methanococcus vannielii. J Biol Chem 257:7926–7929

    Google Scholar 

  • Zabel HP, König H, Winter J (1984) Isolation and characterization of a new coccoid methanogen, Methanogenium tatii spec. nov. from a solfataric field on Mount Tatio. Arch Microbiol 137:308–315

    Google Scholar 

  • Zabel HP, König H, Winter J (1985) Emended description of Methanogenium thermophilicum, Rivard and Smith, and assignment of new isolates to this species. System Appl Microbiol 6:72–78

    Google Scholar 

  • Zellner G, Winter J (1987) Analysis of a highly efficient methanogenic consortium producing biogas from whey. Syst Appl Microbiol (in press)

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by a grant of the Deutsche Forschungsgemeinschaft DFG to J. W. and E. S. Immunologic studies were supported in part by grants No. DE-FGO2-84 R 13197 from the U.S. Department of Energy, and No. 261.81/82 from the North Atlantic Treaty Organization (NATO)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zellner, G., Alten, C., Stackebrandt, E. et al. Isolation and characterization of Methanocorpusculum parvum, gen. nov., spec. nov., a new tungsten requiring, coccoid methanogen. Arch. Microbiol. 147, 13–20 (1987). https://doi.org/10.1007/BF00492898

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00492898

Key words

Navigation