Skip to main content
Log in

Chemotaxonomy of the genus Talaromyces

  • Article
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Species of the ascomycetous genus Talaromyces have been examined for profiles of secondary metabolites on TLC. The greatest number of specific metabolites were produced on oatmeal-, malt extract- and yeast-extract sucrose agars. Profiles of intracellular secondary metabolites produced on oatmeal agar were specific for each species and provided a means of simple differentiation of the taxa. Examination of the most important species using high performence liquid chromatography (HPLC) allowed to solve some taxonomic problems. Known mycotoxins are produced by T. stipitatus (duclauxin, talaromycins, botryodiploidin), T. stipitatus chemotype II (emodin), T. panasenkoi (spiculisporic acid), T. trachyspermus (spiculisporic acid), T. trac macrosporus (duclauxin) and T. wortmannii (rugulosin). Wortmannin is produced by an atypical strain of T. flavus but not T. wortmannii. Several other secondary metabolites were discovered for the first time in the following species: Glauconic acid is produced by T. panasenkoi, T. ohiensis and T. trachyspermus; vermiculine by T. ohiensis; duclauxin by T. flavus var. macrosporus and the mitorubrins by T. flavus and T. udagawae. The profiles of secondary metabolites support the established taxonomy of the species based on morphology, showing the genetic stability of profiles of secondary metabolites in Talaromyces. Two new taxa are proposed: T. macrosporus comb. nov. (stat. anam. Penicillium macrosporum stat. nov.), and Penicillium vonarxii, sp. nov. for the anamorph of T. luteus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas HK & Mirocha CJ (1988) Isolation and purification of a hemorrhagic factor (wortmanin) from Fusarium oxysporum (N17B). Appl. Environ. Microbiol. 54: 1268–1274

    Google Scholar 

  • Acker TE, Brenneisen PE & Tanenbaum SW (1966) Isolation, structure and radiochemical synthesis of 3,6-dimethyl-4-hydroxy-2-pyrone. J. Amer. Chem. Soc. 88: 834–837

    Google Scholar 

  • ArxJ Avon (1986) On Hamigera, its Raperia anamorph and its classification in the Onygenaeae. Mycotaxon 26: 119–123

    Google Scholar 

  • Atherton J, Bychroft BW, Roberts JC, Roffey P & Wilcox ME (1968) Studies in mycological chemistry. 23. The structure of flavomannin, a metabolite of Penicillium wortmanni. J. Chem. Soc. C 1968: 2560–2564

    Google Scholar 

  • Baggerman W & Samson RA (1988) Heat resistance of fungal spores. In: Samson RA & van Reenen-Hoekstra ES Introduction to Food-borne Fungi (pp 262–267), 3rd edn. Centraalbureau voor Schimmelcultures, Baarn

    Google Scholar 

  • Bentley R & Zwitkowits PM (1967) Biosynthesis of tropolones in Penicillium stipitatum. VII. The formation of polyketide lactones and other nontropolone compounds as a result of ethionine inhibition. J. Amer. Chem. Soc. 89: 676–685

    Google Scholar 

  • Beuchat LR (1988) Influence of organic acids on heat resistance characteristics of Talaromyces flavus ascospores. Int. J. Food Microbiol. 6: 97–105

    Google Scholar 

  • Breen J, Dacre JC, Raistrick H & Smith G (1955) Studies in the biochemistry of microorganisms. 95. Rugulosin, a crystalline colouring matter of Penicillium rugulosum Thom. Biochem. J. 60: 618–626

    Google Scholar 

  • Bryant RW & Light RJ (1974) Stipitatonic acid biosynthesis: incorporation of (formyl-14C)-3-methylorcylaldehyde and (14C) stipitaldehydic acid, a new tropolone metabolite. Biochemistry 13: 1516–1522

    Google Scholar 

  • Davis JR, Fravel DR, Marois JJ and Sorensen LH (1986) Effect of soil fumigation and seed piece treament with Talaromyces flavus on wilt incidence and yield. 1983. Biol. Cult. Tests Cont. Pl. Dis. 1: 18

    Google Scholar 

  • Dewar MJS (1945) Structure of stipitatic acid. Nature (London) 155: 50–51

    Google Scholar 

  • Divekar PV, Brenneisen PE & Tannenbaum SW (1961) Stipitatic acid ethyl ester: a naturally occuring tropolone derivative. Biochim. Biophys. Acta 50: 588–589

    Google Scholar 

  • Filtenborg O & Frisvad JC (1980) Simple screening method for toxigenic moulds in pure cultures. Lebensm. Wiss. Technol. 13: 128–130

    Google Scholar 

  • Filtenborg O, Frisvad JC & Svendsen JA (1983) Simple screening method for molds producing intracellular mycotoxins in pure cultures. Appl. Environ. Microbiol. 45: 581–585

    Google Scholar 

  • Fravel DR, Davis JR & Sorensen LH (1986) Effect of Talaromyces flavus and metham on Verticilliumwilt incidence and potato yield. 1984–1985. Biol. Cult. Tests Cont. Pl. Dis. 1: 17

    Google Scholar 

  • Frisvad JC (1986) Taxonomic approaches to mycotoxin identification In: ColeRJ (Ed) Modern methods in the analysis and structural elucidation of mycotoxins (pp 415–457) Academic Press, New York and London

    Google Scholar 

  • Frisvad JC & Filtenborg O (1983) Classification of terverticillate penicillia based on profiles of mycotoxins and other secondary metabolites. Appl. Environ. Microbiol. 46: 1301–1310

    Google Scholar 

  • Frisvad JC & Thrane U (1987) Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone indices and UV-VIS spectra (diode array detection). J. Chromatogr. 404: 195–214

    Google Scholar 

  • Fujimoto H, Jisai Y, Horie Y, Yamazaki M (1988) On the isolation of spiculisporic acid, a toxic metabolite from Talaromyces panasenkoi. Proc. Jpn. Assoc. Mycotoxicol. 27: 15–19

    Google Scholar 

  • Fuska J, Uhrin D, Proksa B, Voticky Z & Ruppelt J (1986) The structure of vermistatin a new metabolite from Penicillium vermiculatum. J. Antibiot. 39: 1605–1608

    Google Scholar 

  • Fuska J, Nemec P & Fuskova A (1979) Vermicillin, a new metabolite from Penicillium vermiculatum inhibiting tumor cells in vitro. J. Antibiot. 32: 667–669

    Google Scholar 

  • Fuska J, Nemec P & Kuhr I (1972) Vermiculine, a new antiprotozoal antibiotic from Penicillium vermiculatum. J. Antibiot. 25: 208–211

    Google Scholar 

  • Fuska J, Proksa B & Uhrin D (1988) The antibiotic PSX-1 produced by Penicillium stipitatum is identical with botryodiploidin. Folia Microbiol. 33: 238–240

    Google Scholar 

  • Gatenbeck S & Mahlen A (1968) A metabolic variation in Penicillium spiculisporum Lehman. I. Production of (+) and (-)-decylcitric acids. Acta Chem Scand. 22: 2613–2616

    Google Scholar 

  • Hocking AD & Pitt JI (1984) Food spoilage fungi. II. Heatresistant fungi. CSIRO Food Res. Q. 44: 73–82

    Google Scholar 

  • Jones D, Andersen HA, Russell JD, Fraser AR & Onions AHS (1984) Vermiculine, a metabolic product from Talaromyces wortmannii. Trans. Brit. Mycol. Soc. 83: 718–721

    Google Scholar 

  • Kuhr I, Fuska J, Sedmera P, Podojil M, Vokoun J & Vanek Z (1973) Antitumor antibiotic produced by Penicillium stipitatum: its identity with duclauxin. J. Antibiot. 26: 535–536

    Google Scholar 

  • Kim KK, Fravel DR & Papavizas GC (1988) Identification of a metabolite produced by Talaromyces flavus as glucose oxidase and its role in the biocontrol of Verticillium dahliae. Phytopathology 78 488–492

    Google Scholar 

  • MacMillan J, Vanstone AE & Yeboah SK (1972) Fungal products III. Structure of wortmannin and some hydrolysis products. J. Chem. Soc. Perkin Trans. I: 2898–2903

    Google Scholar 

  • Mantle PG (1987) Secondary metabolites of Penicillium and Acremonium. In: PeberdyJF (Ed) Penicillium and Acremonium (pp 161–243) Plenum, New York and London

    Google Scholar 

  • Mizuno K, Yagi A, Takada M, Matsuura K, Yamaguchi K & Asano K (1974) A new antibiotic, talaron. J. Antibiot. 27: 560–563

    Google Scholar 

  • Phillips NJ, Cole RJ & Lynn DG (1987) Talaromycins C, D and E. Tetrahedron Lett. 28: 1619–1622

    Google Scholar 

  • Pitt JI (1980) The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic Press, New York and London

    Google Scholar 

  • Pitt JI & Hawksworth DL (1985) The naming of chemical variants in Penicillium and Aspergillus. In: SamsonRA and PittJI (Eds) Advances in Penicillium and Aspergillus systematics (pp 89–91) Plenum Press, New York and London

    Google Scholar 

  • Pitt JI & Hocking AD (1979) Merimbla gen. nov. for the anamorphic state of Talaromyces avellaneus. Can. J. Bot. 57: 2394–2398

    Google Scholar 

  • Ramirez C (1982) Manual and atlas of the penicillia. Williams and Wilkins, Baltimore

    Google Scholar 

  • Samson RA & Abdel-Fattah HM (1978) A new species of Talaromyces and a discussion of some recently described taxa. Persoonia 9: 501–504

    Google Scholar 

  • Samson RA & Pitt JI (Eds) (1985) Advances in Penicillium and Aspergillus systematics. Plenum, New York and London

    Google Scholar 

  • Scott AI, Philips GT & Kircheis U (1971) Biosynthesis of polyketides: synthesis of 6-methylsalicylic acid and triacetic acid lactone in Penicillium patulum. Bioorg. Chem. 1: 380–399

    Google Scholar 

  • Segal W (1959) Stipitatonic acid: a new mould tropolone from Penicillium stipitatum Thom. J. Chem. Soc. 1959: 2847–2851

    Google Scholar 

  • Simpson TJ, Lunnon MW & MacMillan J (1979) Fungal products 21. Biosynthesis of the fungal metabolite, wortmannin, from (1,2 13C2)-acetate. J. Chem. Soc. Perkin Trans 1: 931–934

    Google Scholar 

  • Stolk AC & Samson RA (1971) Studies on Talaromyces and related genera I. Hamigera gen. nov. and Byssochlamys. Persoonia 6: 341–357

    Google Scholar 

  • Stolk AC & Samson RA (1972) Studies on Talaromyces and related genera II. The genus Talaromyces. Stud. Mycol. (Baarn) 2: 1–67

    Google Scholar 

  • Stolk AC & Samson RA (1983) The ascomycete genus Eupenicillium and related Penicillium anamorphs. Stud. Mycol. (Baarn) 23: 1–149

    Google Scholar 

  • Tabuchi T, Nakamura I & Kobayashi T (1977) Accumulation of the open-ring acid of spiculisporic acid by Penicillium spiculisporum. J. ferment. technol. 5: 37–49

    Google Scholar 

  • Takada M & Udagawa S-I (1988) A new species of heterothallic Talaromyces. Mycotaxon 31: 417–425

    Google Scholar 

  • Turner WB (1971) Fungal metabolites. Academic Press, London and New York

    Google Scholar 

  • Turner WB & Aldridge DC (1983) Fungal Metabolites II. Academic Press, London and New York

    Google Scholar 

  • Van Eijk GW (1973) Anthraquinones in the fungus Talaromyces stipitatus. Experientia 29: 522–523

    Google Scholar 

  • Van der Spuy JE, Matthee FN & Crafford DJA (1975) The heart resistance of moulds Penicillium vermiculatum Dangeard and Penicillium brefeldianum Dodge in apple juice. Phytophylactica 7: 105–108

    Google Scholar 

  • Wells JM, Cole RJ & Kirksey J (1975) Emodin a toxic metabolite of Aspergillus wenti isolated from weevil-damaged chestnuts. Appl. Microbiol. 30: 26–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frisvad, J.C., Filtenborg, O., Samson, R.A. et al. Chemotaxonomy of the genus Talaromyces . Antonie van Leeuwenhoek 57, 179–189 (1990). https://doi.org/10.1007/BF00403953

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00403953

Key words

Navigation