Skip to main content
Log in

A model for the indentation size effect in polycrystalline alloys coupling intrinsic and extrinsic length scales

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The measured hardness of a metal crystal depends on a variety of length scales. Microstructural features, such as grain size and precipitate spacing, determine the intrinsic material length scale. Extrinsic (test) length scales, such as the indentation depth, lead to the indentation size effect (ISE), whereby it is typically found that smaller is stronger. Nix and Gao [J. Mech. Phys. Solids46, 411 (1998)] developed a widely used model for interpreting the ISE based on forest hardening in single crystalline pure metals. This work extends that model to consider the hardness of polycrystals and alloys, as well as introducing a finite limit to the hardness at very small extrinsic length scales. The resulting expressions are validated against data from the literature. It is shown that a reasonable estimate of the intrinsic material length scale can be extracted from a suite of hardness tests conducted across a range of indentation depths using spherical indenters of various radii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Similar content being viewed by others

References

  1. J.R. Greer and J.T.M. De Hosson: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654 (2011).

    Article  CAS  Google Scholar 

  2. A.J. Bushby and D.J. Dunstan: Plasticity size effects in nanoindentation. J. Mater. Res. 19, 137 (2003).

    Article  Google Scholar 

  3. G.M. Pharr and W.C. Oliver: Nanoindentation of silver-relations between hardness and dislocation structure. J. Mater. Res. 4, 94 (1988).

    Article  Google Scholar 

  4. C.J. Campbell and S.P.A. Gill: An analytical model for the flat punch indentation size effect. Int. J. Solids Struct. (2019). (in press).

  5. W.D. Nix and H. Gao: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).

    Article  CAS  Google Scholar 

  6. J.G. Swadener, E.P. George, and G.M. Pharr: The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50, 681 (2002).

    Article  Google Scholar 

  7. G.M. Pharr, E.G. Herbert, and Y. Gao: The indentation size effect: A critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 40, 271 (2010).

    Article  CAS  Google Scholar 

  8. B. Ehrler, D.J. Dunstan, T.T. Zhu, X.D. Hou, K.M.Y. P’ng, and A.J. Bushby: The strength of thin films, small structures and materials under localised stresses. Thin Solid Films 517, 3781 (2009).

    Article  CAS  Google Scholar 

  9. T. Gladman: Precipitation hardening in metals. Mater. Sci. Technol. 15, 30 (1999).

    Article  CAS  Google Scholar 

  10. J.W. Morris: Dislocation Plasticity: Overview (2018). Available at: http://www.mse.berkeley.edu/groups/morris/MSE205/Extras/dislocation%20plasticity.pdf (accessed December 13, 2018).

  11. T.T. Zhu, A.J. Bushby, and D.J. Dunstan: Materials mechanical size effects: A review. Mater. Technol. 23, 193 (2008).

    Article  CAS  Google Scholar 

  12. B. Ehrler, X.D. Hou, T.T. Zhu, K.M.Y. P’ng, C.J. Walker, A.J. Bushby, and D.J. Dunstan: Grain size and sample size interact to determine strength in a soft metal. Philos. Mag. 88, 3043 (2008).

    Article  CAS  Google Scholar 

  13. J.R. Greer and W.D. Nix: Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73, 245410 (2006).

    Article  Google Scholar 

  14. S. Lefebvre, B. Devincre, and T. Hoc: Simulation of the Hall–Petch effect in ultra-fine grained copper. Mater. Sci. Eng., A 400–401, 150 (2005).

    Article  Google Scholar 

  15. D.J. Dunstan, B. Ehrler, R. Bossis, S. Joly, K.M.Y. P’ng, and A.J. Bushby: Elastic limit and strain hardening of thin wires in torsion. Phys. Rev. Lett. 103, 155501 (2009).

    Article  CAS  Google Scholar 

  16. D.R. Jones and M.F. Ashby: Engineering Materials 1: An Introduction to Properties, Applications and Design (Elsevier, Oxford, England, 2011).

    Google Scholar 

  17. R. Labusch: A statistical theory of solid solution hardening. Phys. Status Solidi B 41, 659 (1970).

    Article  Google Scholar 

  18. H. Atkinson and S. Gill: Modelling creep in nickel alloys in high temperature power plants. In Structural Alloys for Power Plants, A. Shirzadi and S. Jackson, eds. (Elsevier, Cambridge, U.K., 2014); p. 447.

    Chapter  Google Scholar 

  19. S. Queyreau, G. Monnet, and B. Devincre: Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations. Acta Mater. 58, 5586 (2010).

    Article  CAS  Google Scholar 

  20. M. Rester, C. Motz, and R. Pippan: Where are the geometrically necessary dislocations accommodating small imprints? J. Mater. Res. 24, 647 (2008).

    Article  Google Scholar 

  21. K. Durst, B. Backes, and M. Göken: Indentation size effect in metallic materials: Correcting for the size of the plastic zone. Scr. Mater. 52, 1093 (2005).

    Article  CAS  Google Scholar 

  22. Y. Huang, F. Zhang, K.C. Hwang, W.D. Nix, G.M. Pharr, and G. Feng: A model of size effects in nano-indentation. J. Mech. Phys. Solids 54, 1668 (2006).

    Article  Google Scholar 

  23. K.W. McElhaney, J.J. Vlassak, and W.D. Nix: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 13, 1300 (1997).

    Article  Google Scholar 

  24. T.G.d. Sousa, V.L. Sordi, and L.P. Brandão: Dislocation density and texture in copper deformed by cold rolling and ecap. Mater. Res. 21 (2018).

  25. G. Feng and W.D. Nix: Indentation size effect in MgO. Scr. Mater. 51, 599 (2004).

    Article  CAS  Google Scholar 

  26. X.D. Hou, A.J. Bushby, and N.M. Jennett: Study of the interaction between the indentation size effect and Hall–Petch effect with spherical indenters on annealed polycrystalline copper. J. Phys. D: Appl. Phys. 41, 074006 (2008).

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed as part of a EURAMET joint research project (StrengthABLE) with funding from the European Community’s Seventh Framework Programme, ERA-NET Plus, under Grant Agreement No. 217257.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon P. A. Gill.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gill, S.P.A., Campbell, C.J. A model for the indentation size effect in polycrystalline alloys coupling intrinsic and extrinsic length scales. Journal of Materials Research 34, 1645–1653 (2019). https://doi.org/10.1557/jmr.2019.106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.106

Navigation