Skip to main content

Advertisement

Log in

Spatial Abundance and Colour Morphotype Densities of the Rock-Boring Sea Urchin (Echinometra lucunter) at Two Different Habitats

  • Published:
Thalassas: An International Journal of Marine Sciences Aims and scope Submit manuscript

Abstract

The rock-boring sea urchin Echinometra lucunter is a common echinoderm found throughout the intertidal zone along the northeastern coast of, Toco, Trinidad. Sea urchin abundance, size distribution, and colour morphotypes at two sites: Pequelle Bay (SB) and Grande L’Anse (GA) were quantified using 1 m2 quadrats, accessible during extreme low tides, and in two environments, notably low and high wave action. Percent coverage of cnidarian and macroalgae were estimated in each quadrat. Sea urchin densities were 9.9–17.8 urchins/m2 in high wave action, and 25.2–60.7 urchins/m2 in low wave action environments. Size (measured as maximum sea urchin diameter) are highest between 21 and 50 mm for both black and red colour morphotypes. Black colour morphs were significantly larger than red morphs (ANOVA, F2, 175 = 5.55, p < 0.05). Sea urchins at low energy environments were significantly larger than those found in high energy environments for all years (p < 0.05). Mean hard coral, soft coral, and macroalgae cover did not show any relationship with habitat type or urchin densities. Although sea urchin abundance and distribution were variable, larger urchins were more likely to be found in low wave action environments, and smaller urchins were mostly found in the open, and exposed to high wave action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarado JJ (2011) Echinoderm diversity in the Caribbean Sea. Mar Biodivers 41:261–285

    Article  Google Scholar 

  • Appana SD, Vuki VC, Cumming RL (2004) Variation in abundance and spatial distribution of ectomorphs of the sea urcins. Echinometra sp Nov A and E sp Nov C on a Fijian reef Hydrobiologia 518:105–110

    Article  Google Scholar 

  • Belford S, Phillip DAT (2011) Rapid assessment of a coral reef community in a marginal habitat in the southern Caribbean: a simple way to know what’s out there. Asian J Biol Sci 4(7):520–531

    Article  Google Scholar 

  • Belford SG, Phillip DAT (2012) Intertidal distribution patterns of Zoanthids compared to their Scleractinian counterparts in the southern Caribbean. Int J Oceanog Mar Ecol Sys 1(3):67–75

    Google Scholar 

  • Belford SG, Phillip DAT, Rutherford MG, Schmidt RS, Duncan EJ (2019) Biodiversity of coral reef communities in marginal environments along the north-eastern coast of Trinidad, Southern Caribbean. Aqua Farm Mar Biol 2(1):1–23

  • Blevins E, Johnsen S (2004) Spatial vision in the echinoid genus Echinometra. J Exp Biol 207:4249–4253

    Article  Google Scholar 

  • Burke LM, Reytar K, Spalding M, Perry A (2011) Reefs at risk revisited. World Resources Institute, Washington, D.C.

    Google Scholar 

  • Cameron CM, Brodeur MC (2007) The abundance of sea urchins (Diadema antillarum, Echinometra lucunter and Tripneustes ventricosus) and macroalgae in shallow reef zones of Bonaire. Pages 30-38. In: Steneck RS, Mumby P, Arnold S (eds) A report on the status of the coral reefs of Bonaire in 2007 with results from monitoring 2003–2007. Report to the Bonaire Marine National Park

  • Carpenter RC (1986) Partitioning herbivory and its effects on coral reef algal communities. Ecol Monogr 56:345–363

    Article  Google Scholar 

  • Coma R, Serrano E, Linares C, Ribes M, Díaz D, Ballestero E (2011) Sea urchin predation facilitates coral invasion in a marine reserve. PLoS One 6:e22017

    Article  Google Scholar 

  • Dumas P, Kulbicki M, Chifflet S, Fichez R, Ferraris J (2007) Environmental factors influencing urchin spatial distributions on disturbed coral reefs (New Caledonia, South Pacific). J Exp Mar Biol Ecol 344:88–100

    Article  Google Scholar 

  • Ebert TA, Dixon JD, Schroeter SC, Kalvass PE, Richmond NT, Bradbury WA, Woodby DA (1999) Growth and mortality of red sea urchins Strongylocentotus franciscanus across a latitude gradient. Mar Ecol Prog Ser 190:189–209

    Article  Google Scholar 

  • Ebert TA, Russell MP, Gamba G, Bodnar A (2008) Growth, survival, and longevity estimates for the rock-boring sea urchin Echinometra lucunter lucunter (Echinodermata, Echinoidea). Bull Mar Sci 82:381–403

    Google Scholar 

  • Gardner T, Côté I, Gill J, Grant A, Watkinson A (2003) Long-term region-wide declines in Caribbean corals. Sci 301:958–960

    Article  Google Scholar 

  • Geyer LB, Lessios HA (2009) Lack of character displacement in the male rocognition molecule, Bindin, in Atlantic sea urchins of genus Echinometra. Mol Biol Evol 26(9):2135–2146

  • Glynn P (1984) Widespread coral mortality and the 1992-1983 El Nino warming event. Environ Conserv 11(2):133–146

  • Greenstein BJ (1993) Is the fossil record of regular echinoids really so poor? A comparison of living and subfossil assemblages. Palaios 8:587–601

    Article  Google Scholar 

  • Grunbaum H, Bergman G, Abbott DP, Ogden JC (1978) Intraspecific agonistic behavior in the rock-boring sea urchin Echinometra lucunter (L.) (Echinodermata: Echinoidea). Bull Mar Sci 1978:181

    Google Scholar 

  • Guidetti P (2007) Predator diversity and density affect levels of predation upon strongly interactive species in temperate rocky reefs. Oecologia 154:513–520

    Article  Google Scholar 

  • Hendler G, Miller JE, Pawson DL, Kier PM (1995) Class Echinoidea: sea urchins, sand dollars, and heart urchins. In: Hendler et al (eds) Sea stars, sea urchins, and allies: echinoderms of Florida and the Caribbean. Smithsonian Institution press, Washington, Washington, pp 197–249

    Google Scholar 

  • Herberts C (1972) Contribution à l’étude écologique de quelques zoanthaires tempérés et tropicaux. Mar Biol 13:127–136

    Article  Google Scholar 

  • Hereu B, Zabala M, Linares C, Sala E (2005) The effects of predator abundance and habitat structural complexity on survival of juvenile sea urchins. Mar Biol 146:293–299

    Article  Google Scholar 

  • Hernandez-Delgado EA, Suleiman-Ramos SE (2014) E.S.A. coral species listing: a road-block to community-based engagement in coral reef conservation and rehabilitation across the U.S. Caribbean? Reef Encounter 29(1):11–15

  • Heron SF, Maynard JA, van Hooidonk R, Eakin CM (2016) Warming trends and bleaching stress of the world’s coral reefs 1985-2012. Sci Rep 6:38402

    Article  Google Scholar 

  • Hoegh-Guldberg et al (2014) Impacts, adaptations and vulnerability. In: Part B: regional aspects: contribution of working group II to the fifth assessment report of the international panel on climate change. T.F. Stocker ED. Cambridge University Press

  • Hughes TP (1994) Catastrophies, phase shifts, and large-scale degradation of a Caribbean coral reef. Sci 265:1547–1551

    Article  Google Scholar 

  • Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, Moltschaniwskyj N, Pratchett MS, Steneck RS, Willis B (2007) Phase shifts, herbivory, and resilience of coral reefs to climate change. Curr Biol 17(4):360–365

    Article  Google Scholar 

  • Hughes TP, Graham NA, Jackson JB, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25(11):633–642

    Article  Google Scholar 

  • Hughes et al (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Sci 359:80–83

    Article  Google Scholar 

  • Knowlton N (2001) The future of coral reefs. PNAS 98(10):5419–5425

    Article  Google Scholar 

  • Lawrence JM, Kafri J (1979) Numbers, biomass and caloric content of the echinoderm fauna of the rocky shores of Barbados. Mar Biol 52:87–91

    Article  Google Scholar 

  • Lessios HA, Robertson DR, Cubit JD (1984) Spread of Diadema mass mortality through the Caribbean. Sci 226(4672):335–337

    Article  Google Scholar 

  • Lewis JB, Storey GS (1984) Differences in morphology and life history traits of the echinoid Echinometra lucunter from different habitats. Mar Ecol Prog Ser 15:207–211

    Article  Google Scholar 

  • McClanahan TR, Muthiga NA (2013) Echinometra. Dev Aqua Fish Sci 38:337–353

  • McPherson BF (1969) Studies on the biology of the tropical sea urchin, Echinometra lucunter and Echinometra viridis. Bull Mar Sci 19(1):194–213

    Google Scholar 

  • Miller J, Miller E, Rogers C, Waara R, Atkinson A, Whelan K, Patterson M, Witcher B (2009) Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands. Coral Reefs 28:925–937

    Article  Google Scholar 

  • Miloslavich P, Díaz JM, Klein E, Alvarado JJ, Díaz C, Gobin J, Escobar-Briones E, Cruz-Motta JJ, Weil E, Cortés J, Bastidas AC, Robertson R, Zapata F, Martín A, Castillo J, Kazandjian A, Ortiz M (2010) Marine biodiversity in the Caribbean: regional estimates and distribution patterns. PLoS One 5(8):e11916

    Article  Google Scholar 

  • Olson, DE, Steneck, RS. Trends in macroalgae abundance in Bonaire, 2003-2007. Pages 6-13. In Steneck, RS, Mumby P, Arnold S. (eds). 2007. A report on the status of the coral reefs of Bonaire in 2007 with results from monitoring 2003–2007. Report to the Bonaire Marine National Park

  • Pandolfi et al (2003) Global trajectories of the long-term decline of coral reef ecosystems. Sci 301:955–958

    Article  Google Scholar 

  • Pawson DL (2007) Phylum Echinodermata. Zootaxa 1668:749–764

    Article  Google Scholar 

  • Perry CT, Steneck RS, Murphy GN, Kench PS, Edinger EN, Smithers SG, Mumby PJ (2015) Regional-scale dominance of non-framework building corals on Caribbean reefs affects carbonate production and future reef growth. Glob Chang Biol 21(3):1153–1164

    Article  Google Scholar 

  • Pomba L, Prito AS, Manrique R (1990) Abundance and spatial distribution pattern in a population of the urchin Echinometra lucunter (L.) in the Gulf of Cariaco, Venezuela. Acta Cientifica Venezolana 40:289–294

    Google Scholar 

  • Raffaelli D, Hawkins S (1999) Intertidal ecology. Kluwer Academic Publishers, Dordrecht, p 365

    Google Scholar 

  • Rivera-Monroy VH, Twilley RR, Bone D, Childers DL, Coronado-Molina RC, Feller RC et al (2004) A conceptual framework to develop long-term ecological research and management objectives in the wider Caribbean region. Bioscience 54:843–856

    Article  Google Scholar 

  • Russo AR (1977) Water flow and the distribution and abundance of echinoids (genus Echinometra) on an Hawaiian reef. Aust J Mar Freshwat Res 28(6):693–702

    Article  Google Scholar 

  • Sala E (1997) Fish predators and scavengers of the sea urchin Paracentrotus lividus in protected areas of the north-West Mediterranean Sea. Mar Biol 129:531–539

    Article  Google Scholar 

  • Sánchez-Jérez P, Cesar A, Cortez FS, Pereira CD, Silva SL (2001) Spatial distribution of the most abundant sea urchin populations on the southeast coast of São Paulo (Brazil). Ciencia Marinas 27(1):139–153

    Article  Google Scholar 

  • Schultz H (2010) Sea urchins, a guide to worldwide shallow water species, Heinke + Peter Schultz partner scientific publications, 3rd edn. Hemdingen, Germany

    Google Scholar 

  • Shiel DR, Foster MS (1986) The structure of subtidal algal stands in temperate waters. Ocean Mar Biol Ann Rev 24:265–307

    Google Scholar 

  • Weil E, Cróquer A (2009) Spatial variability in distribution and prevalence of Caribbean scleractinian coral and octocoral diseases. I. Community-level analysis. Dis Aquat Org 83:195–208

    Article  Google Scholar 

  • Young MA, Bellwood DR (2011) Diel patterns in sea urchin activity and predation on sea urchins on the great barrier reef. Coral Reefs 30(3):729

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by partial funding from the Martin Methodist College Biology department, alumni council, and International Studies department. Field assistants involved in some data collection were Bradley Crye, Markeyta Bledsoe, Madeline Woods, CalliAnna McDonald, and Douglas Dorer. Dawn A.T. Phillip is credited for field observations that were instrumental to the development of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Belford.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(JPG 133 kb)

ESM 2

(JPG 156 kb)

ESM 3

(JPG 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belford, S.G. Spatial Abundance and Colour Morphotype Densities of the Rock-Boring Sea Urchin (Echinometra lucunter) at Two Different Habitats. Thalassas 36, 157–164 (2020). https://doi.org/10.1007/s41208-019-00170-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41208-019-00170-2

Keywords

Navigation