Skip to main content
Log in

Glyoxylate conversion by Hyphomicrobium species grown on allantoin as nitrogen source

  • Biochemistry
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Glyoxylate, formed as a result of allantoin degradation, is converted by Hyphomicrobium species to glycerate via tartronate semialdehyde. Glyoxylate carboligase and tartronate semialdehyde reductase, the two enzymes involved, are present only in cells grown on allantoin as nitrogen source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Attwood, M. M. and Harder, W. 1972. A rapid and specific enrichment procedure for Hyphomicrobium spp. — Antonie van Leeuwenhoek 38: 369–378.

    Google Scholar 

  • Bellion, E., Bolbot, J. A. and Vash, T. D. 1981. Generation of glyoxylate in methylotrophic bacteria. — Curr. Microbiol. 6: 367–372.

    Google Scholar 

  • Blackmore, M. A. and Quayle, J. R. 1970. Microbial growth on oxalate by a route not involving glyoxylate carboligase. — Biochem. J. 118: 53–59.

    Google Scholar 

  • DeWindt, F. E. and Van der Drift, C. 1980. Purification and some properties of hydroxypyruvate isomerase of Bacillus fastidiosus. — Biochim. Biophys. Acta 613: 556–562.

    Google Scholar 

  • Harder, W. and Attwood, M. M. 1978. Biology, physiology and biochemistry of Hyphomicrobia. — Adv. Microbiol. Physiol. 17: 303–359.

    Google Scholar 

  • Hedrick, J. L. and Sallach, H. J. 1961. The metabolism of hydroxypyruvate. I. The nonenzymatic decarboxylaton and autooxidation of hydroxypyruvate. — J. Biol. Chem. 236: 1867–1871.

    Google Scholar 

  • Hermans, J. M. H., Hutten, T. J., Van der Drieft, C. and Vogels, G. D. 1980. Analysis of coenzyme M (2-mercaptoethanesulfonic acid) derivatives by isotachophoresis. — Anal. Biochem. 106: 363–366.

    Google Scholar 

  • Kortstee, G. J. J. 1980. The homoisocitrate-glyoxylate cycle in pink, facultative methylotrophs. — FEMS Microbiol. Lett. 8: 59–65.

    Google Scholar 

  • Kortstee, G. J. J. 1981. The second part of the icl serine-pathway. p. 211–219. In H. Dalton (ed.), Microbial growth on C1 compounds. — Heyden, London.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. — J. Biol. Chem. 193: 265–275.

    Google Scholar 

  • Stafford, H. A., Magaldi, A. and Vennesland, B. 1954. The enzymic reduction of hydroxypyruvic acid to D-glyceric acid in higher plants. — J. Biol. Chem. 207: 621–629.

    Google Scholar 

  • Van der Drift, C., De Windt, F. E. and Doddema, H. J. 1981. Metabolism of allantoin in Hyphomicrobium species. — Antonie van Leeuwenhoek 47: 565–570.

    Google Scholar 

  • Vogels, G. D. and Van der Drift, C. 1970. Differential analyses of glyoxylate derivatives. —Anal. Biochem. 33: 143–157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Drift, C., de Windt, F.E. Glyoxylate conversion by Hyphomicrobium species grown on allantoin as nitrogen source. Antonie van Leeuwenhoek 49, 167–172 (1983). https://doi.org/10.1007/BF00393675

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00393675

Keywords

Navigation