Skip to main content
Log in

Significance of laricinan in compression wood tracheids

  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Summary

After a β-D-1,3-linked glucan had been isolated from compression wood, identified, and named ‘laricinan’, other researchers suggested that it occupied the helical cavities in the S2 layer of those tracheids. They postulated that the glucan was responsible for the capacity of compression wood to generate the large forces associated with reorientation of displaced stems and branches, and also caused its severe shrinkage with drying.

Analyses herein indicate that it is improbable that such a glucan could be the primary factor responsible for those characteristics of compression wood. An alternative significance is proposed, namely that its presence strengthens the already well-supported deduction that the helical cavities have a schizogenous origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aspinall, G. O.; Kessler, G. 1957. The structure of callose from the grape vine. Chem. Ind. (London): 1296

  • Axelsson, K.; Björndal, H.; Eriksson, K. E. 1968. An extracellular glucan produced by the rot fungus Stereum sanguinolentum. Acta Chem. Scand. 22: 1363–1364

    Google Scholar 

  • Barber, N. F. 1968. A theoretical model of shrinking wood. Holzforschung 22: 97–103

    Google Scholar 

  • Barber, N. F.; Meylan, B. A. 1964. The anisotropic shrinkage of wood, a theoretical model. Holzforschung 18: 146–156

    Google Scholar 

  • Bosshard, H. H. 1956. Über die Anisotropie der Holzschwindung. Holz Roh- Werkstoff 14: 285–295

    Google Scholar 

  • Boyd, J. D. 1950. Tree growth stresses. III. The origin of growth stresses. Austral. J. Sci. Res. B. 3: 294–309

    Google Scholar 

  • Boyd, J. D. 1972. Tree growth stresses. V. Evidence of an origin in differentiation and lignification. Wood Sci. Technol. 6: 251–266

    Google Scholar 

  • Boyd, J. D. 1973a. Helical fissures in compression wood cells: causative factors and mechanics of development. Wood Sci. Technol. 7: 92–111

    Google Scholar 

  • Boyd, J. D. 1973b. Compression wood force generation and functional mechanics. N.Z. J. For. Sci. 3: 240–258

    Google Scholar 

  • Boyd, J. D. 1974a. Anisotropic shrinkage of wood: identification of the dominant determinants. J. Jap. Wood Res. Soc. 20: 473–482

    Google Scholar 

  • Boyd, J. D. 1974b. Relating lignification to microfibril angle differences between tangential and radial faces of all wall layers in wood cells. Drev. Vysk. 19: 41–45

    Google Scholar 

  • Boyd, J. D. 1977. Relationship between fibre morphology and shrinkage of wood. Wood Sci. Technol. 11: 3–22

    Google Scholar 

  • Boyd, J. D.; Foster, R. C. 1974. Tracheid anatomy changes as responses to changing structural requirements of the tree. Wood Sci. Technol. 8: 91–105

    Google Scholar 

  • Brodzki, P. 1972. Callose in compression wood tracheids. Acta Soc. Bot. Polon. 41: 321–327

    Google Scholar 

  • Brown, R. G.; Lindberg, B. 1967. Polysaccharides from cell walls of Aureobasidium (Pullularia) pullulans. Part I. Glucans. Acta Chem. Scand. 21: 2379–2382

    PubMed  Google Scholar 

  • Côté, W. A.; Day, A. C.; Timell, T. E. 1968a. Distribution of lignin in normal and compression wood of tamarack. Wood Sci. Technol. 2: 13–37

    Google Scholar 

  • Côté, W. A.; Kutscha, N. P.; Timell, T. E. 1968b. Studies on compression wood. VIII. Formation of cavities in compression wood tracheids of Abies balsamea (L.) Mill. Holzforschung 22: 138–144

    Google Scholar 

  • Currier, H. B. 1957. Callose substance in plant walls. Amer. J. Bot. 44: 478–488

    Google Scholar 

  • Eschrich, W. 1965. Physiologie der Siebröhrencallose. Planta 65: 280–300

    Google Scholar 

  • Fujita, M.; Saiki, H.; Harada, H. 1973. The secondary wall formation of compression wood tracheids. On the helical ridges and cavities. Bull. Kyoto Univ. For. 45: 192–203

    Google Scholar 

  • Hejnowicz, Z. 1957. Some observations on the mechanisms of orientation movements of woody stems. Amer. J. Bot. 54: 684–689

    Google Scholar 

  • Hoffmann, G. C.; Timell, T. E. 1970. Isolation of a β-1,3-glucan (laricinan) from compression wood of Larix laricina. Wood Sci. Technol. 4: 159–162

    Google Scholar 

  • Hoffmann, G. C.; Timell, T. E. 1972. Polysaccharides in compression wood of tamarack (Larix laricina). 1. Isolation and characterization of laricinan, an acidic glucan. Svensk Papperstid. 75: 135–141

    Google Scholar 

  • jutte, S. M.; Levy, J. F. 1972. Compression wood in Pinus ponderosa Laws. A scanning electron microscopy study. JAWA 1972 (2): 3–7

    Google Scholar 

  • Kessler, G. 1958. Zur Charakterislerung der Siebröhren-Kallose. Ber. Schweiz. Bot. Ges. 68: 5–43

    Google Scholar 

  • Mahadevan, P. R.; Tatum, E. L. 1967. Localization of structural polymers in the cell wall of Neurospora crassa. J. Cell. Biol. 35: 295–302

    Article  PubMed  Google Scholar 

  • Meylan, B. E.; Butterfield, B. G. 1972. Three-dimensional structure of wood. A scanning electron microscope study. Reed Education/Division of A.H. & A.W. Reed

  • Nakato, K. 1958. On the cause of the anisotropic shrinkage and swelling of wood. IX. On the relationships between the microscopic structure and the anisotropic shrinkage in transverse section (2). J. Jap. Wood Res. Soc. 4: 134–141

    Google Scholar 

  • Scurfield, G.; Silva, S. 1969. The structure of reaction wood as indicated by scanning electron microscopy. Austral. J. Bot. 17: 391–402

    Google Scholar 

  • Simpson, W. T. 1971. Moisture changes induced in red oak by transverse stress. Wood Fiber 5: 13–21

    Google Scholar 

  • Wardrop, A. B.; Davies, G. W. 1964. The nature of reaction wood. VIII. The structure and differentiation of compression wood. Austral. J. Bot. 12: 24–38

    Google Scholar 

  • Warsi, S. A.; Whelan, W. J. 1957. Structure of pachyman, the polysaccharide component of Poria cocos Wolf. Chem. Ind. (London): 1573

  • Włoch, W. 1975. Longitudinal shrinkage of compression wood in dependence on water content and cell wall structure. Acta Soc. Bot. Polon. 44: 217–229

    Google Scholar 

  • Zevenhuizen, L. P. T. M.; Bartnicki-Garcia, S. 1969. Chemical structure of the insoluble hyphal wall glucan of Phytophthora cinnamomi. Biochem. 8: 1496–1502

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyd, J.D. Significance of laricinan in compression wood tracheids. Wood Sci.Technol. 12, 25–35 (1978). https://doi.org/10.1007/BF00390008

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00390008

Keywords

Navigation