Skip to main content
Log in

A sulfotransferase from spinach leaves using adenosine-5′-phosphosulfate

  • Published:
Planta Aims and scope Submit manuscript

Summary

Active sulfotransferase can be extracted from spinach (Spinacea oleracea L.) leaves (and other higher plants) using a buffer system containing 0.1 M KCl and thiol reagents. This sulfotransferase is labile, it can, however, be stabilized by storage in 70% ammonium sulfate containing 10 mM mercaptoethanol. This extract will reduce labelled adenosine-5′-phosphosulfate (APS) and 3′-phosphoadenosine-5′-phosphosulfate (PAPS) to acid-volatile radioactivity when dithioerythrol is added. The reduction from PAPS requires magnesium chloride and is inhibited by calcium chloride and sodium fluoride, whereas these chemicals have little effect on the APS-sulfotransferase activity. The reduction rates from both nucleotides are stimulated by increasing ionic strength and are inhibited by phosphate and cyanide. In the presence of non-labelled APS the acid-volatile radioactivity distilled from [35S] PAPS is drastically reduced, whereas the opposite experiment using [35S] APS in the presence of non-labelled PAPS has little effect. This indicates that APS is an obligatory intermediate in the conversion of [35S] PAPS to acid-volatile radioactivity. It is therefore concluded that the sulfotransferase from spinach is specific for APS. Activity with APS as sulfur-donor was found in 5 other plants in addition to spinach: Pennisetum, Zea (Gramineae); Brassica (Cruciferae); Helianthus (Compositae); and Vicia (Papilionaceae). These experiments demonstrate the use of APS for assimilatory sulfate reduction in higher plants. This has been shown previously for the green alga Chlorella.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APS:

Adenosine-5′-Phosphosulfate

PAPS:

3′-Phosphoadenosine-5′-phosphosulfate

DTE:

Dithioerythrol

References

  • Asahi, T.: Sulfur metabolism in higher plants. IV. Mechanism of sulfate reduction in chloroplasts. Biochim. biophys. Acta (Amst.) 82, 58–66 (1964)

    Google Scholar 

  • Brunngraber, E. F., Chargaff, E.: Purification and properties of a nucleotide phosphotransferase from carrot. J. biol. Chem. 242, 4834–4840 (1967)

    Google Scholar 

  • Brunngraber, E. F., Chargaff, E.: A nucleotide phosphotransferase from Escherichia coli. Biochemistry 12, 3005–3012 (1973a)

    Google Scholar 

  • Brunngraber, E. F., Chargaff, E.: Nicotine adenine dinucleotide as substrate of the nucleotide phosphotransferase from Escherichia coli. Biochemistry 12, 3012–3016 (1973b)

    Google Scholar 

  • Burnell, J. N., Anderson, J. W.: Adenosine-5′-sulphatokinase activity in spinach leaf tissue. Biochem. J. 134, 565–579 (1973)

    Google Scholar 

  • Ellis, R. J.: Sulphate activation in higher plants. Planta (Berl.) 88, 34–42 (1969)

    Google Scholar 

  • Hilz, H., Kittler, M., Knappe, G.: Die Reduktion von Sulfat in der Hefe. Biochem. Z. 332, 151–166 (1959)

    Google Scholar 

  • Hodson, R. C., Schiff, J. A., Scarsella, A. J., Levinthal, M.: Studies of sulfate utilization by algae. 6. Adenosine-3′-phosphate-5′-phosphosulfate (PAPS) as an intermediate in thiosulfate formation from sulfate by cell-free extracts of Chlorella. Plant Physiol. 43, 563–569 (1968)

    Google Scholar 

  • Hodson, R. C., Schiff, J. A.: Preparation of adenosine-3′-phosphate-5′-phosphosulfate (PAPS): An improved enzymatic method using Chlorella pyrenoidosa. Arch. Biochem. Biophys. 132, 151–156 (1969)

    Google Scholar 

  • Hodson, R. C., Schiff, J. A.: Studies of sulfate utilization by algae. 9. Fractionation of a cell-free system from Chlorella into two activities necessary for the reduction of adenosine-3′-phosphate-5′-phosphosulfate to acid-volatile radioactivity. Plant Physiol. 47, 300–305 (1971)

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. J., Randall, R. J.: Protein measurement with the folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)

    PubMed  Google Scholar 

  • Pasternak, C. A., Ellis, R. J., Jones-Mortimer, M. C., Crichton, C. E.: The control of sulphate reduction in bacteria. Biochem. J. 96, 270–275 (1965)

    Google Scholar 

  • Patterson, M. S., Greene, R. C.: Measurement of low energy beta-emitters in aqueous solution by liquid scintillation counting of emulsions. Anal. Chem. 37, 854–857 (1965)

    Google Scholar 

  • Schiff, J. A., Hodson, R. C.: The metabolism of sulfate. Ann. Rev. Plant Physiol. 24, 381–414 (1973)

    Google Scholar 

  • Schmidt, A.: Untersuchungen zum Mechanismus der photosynthetischen Sulfatreduktion isolierter Chloroplasten. Thesis, Göttingen 1968

  • Schmidt, A.: An APS-sulfotransferase from Chlorella. Arch. mikrobiol. 84, 77–86 (1972a)

    Google Scholar 

  • Schmidt, A.: Uber Teilreaktionen der photosynthetischen Sulfatreduktion in zellfreien Systemen aus Spinatchloroplasten und Chlorella. Z. Naturforsch. 27b, 183–192 (1972b)

    Google Scholar 

  • Schmidt, A., Abrams, W. R., Schiff, J. A.: Studies of sulfate utilization by algae. Reduction of adenosine-5′-phosphosulfate (APS) to cysteine in extracts from Chlorella and mutants blocked for sulfate reduction. Europ. J. Biochem. 47, 423–434 (1974)

    Google Scholar 

  • Schmidt, A., Schwenn, J. D.: On the mechanism of photosynthetic sulfate reduction. Second. Internat. Congr. on Photosynthesis, Stresa, 507–513 (1971)

  • Schmidt, A., Trebst, A.: The mechanism of photosynthetic sulfate reduction by isolated chloroplasts. Biochim. biophys. Acta (Amst.) 180, 529–535 (1969)

    Google Scholar 

  • Tsang, M. L., Schiff, J. A.: A comparison of the enzymology of sulfate reduction in Chlorella and E. coli. Plant Physiol. 53, S-66 (1974)

    Google Scholar 

  • Tsang, M. L., Schiff, J. A.: Distribution of adenosine-5-phosphosulfate (APS) and adenosine-3′-phosphate-5′-phosphosulfate (PAPS) sulfotransferases in assimilatory sulfate reducers. Biol. Bull. 147, 502 (1974)

    Google Scholar 

  • Trebst, A., Schmidt, A.: Photosynthetic sulfate and sulfite reduction by isolated chloroplasts. In: Progress in photosynthesis research, vol. III, p. 1510–1516. Ed. H. Metzner: Tübingen 1969

  • Wells, G. N., Hagemann, R. B.: Specificity for nicotinamide adenine dinucleatide by nitrate reductases from leaves. Plant Physiol. 54, 136–141 (1974)

    Google Scholar 

  • Wilson, L. G., Asahi, T., Bandurski, R. S.: Yeast sulfate-reducing system. I. Reduction of sulfate to sulfite. J. biol. Chem. 236, 1822–1829 (1961)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, A. A sulfotransferase from spinach leaves using adenosine-5′-phosphosulfate. Planta 124, 267–275 (1975). https://doi.org/10.1007/BF00388689

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00388689

Keywords

Navigation