Skip to main content
Log in

Isolation and properties of lysosomes from dark-grown potato shoots

  • Published:
Planta Aims and scope Submit manuscript

Summary

A method is described for the isolation of lysosomal fractions from dark-grown potato shoots using a single stage separation on a Ficoll gradient. Peaks of acid hydrolase activity consisting of acid phosphatase, phosphodiesterase, ribonuclease, carboxylic esterase and β-glycerophosphatase were well separated from peaks of mitochondrial and glyoxysomal enzymes. A heavy lysosomal fraction with particle diameters from 0.1 to 1.6 μ and density of 1.10 g cm-3 containing relatively low hydrolase activity was distinguishable from a light fraction with diameters 0.025 to 0.6 μ and density of 1.07 g cm-3 with a higher level of hydrolase activity. Both fractions appeared heterogeneous by electron microscopy, but the fine structure of the membranes of both heavy and light lysosomes was similar. The heavy lysosomal fraction was rich in autophagic vacuoles (secondary lysosomes) containing organelles and amorphous cytoplasmic material. Both fractions were rich in ribonucleic acid.

Freezing and thawing, high speed blending and ultrasonication either singly or in combination solubilised a maximum of ca. 30% of the acid phosphatase from crude lysosomal fractions derived from dark-grown potato shoots. Treatment with Triton X-100 and deoxycholate released appreciably more enzyme activity but acetone and carbon tetrachloride failed to solubilise any acid phosphatase. Only detergent treatments gave marked overrecovery of enzyme and indicated structure-linked latency. Liberation of enzyme from lysosomes varied with pH and was almost complete at both extremes of pH. Crude snake venom was rapid and effective in solubilising acid phosphatase from lysosomal preparations, purified phospholipase A was less effective and phospholipases C and D had negligible effects. Phospholipase and venom mediated release of acid phosphatase was accompanied by the coincident release of an acid end-product. Gel filtration of acid phosphatase liberated from heavy and light lysosomal fractions by snake venom digestion revealed that each of these fractions was characterised by the presence of distinct molecular forms of the enzyme. The nature of the association of acid phosphatase with potato shoot lysosomes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allmann, D. W., Bachmann, E., Green, D. E.: The membrane system of the mitochondrion. II. The K factor of the outer membrane of beef heart mitochondria. Arch. Biochem. 115, 165–171 (1966).

    Google Scholar 

  • Andrews, P.: The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem. J. 96, 595–606 (1965).

    Google Scholar 

  • Appelmans, F., de Duve, C.: Tissue fractionation studies. 3. Further observations on the binding of acid phosphatase by rat liver particles. Biochem. J. 59, 426–433 (1955).

    Google Scholar 

  • Bachmann, E., Allmann, D. W., Green, D. E.: The membrane systems of the mitochondrion. 1. The S fraction of the outer membrane of beef heart mitochondria. Arch. Biochem. 115, 153–164 (1966).

    Google Scholar 

  • Balz, H. P.: Intrazelluläre Lokalisation und Funktion von hydrolytischen Enzymen bei Tabak. Planta (Berl.) 70, 207–236 (1966).

    Google Scholar 

  • Beaufay, H.: Methods for the isolation of lysosomes. In: Frontiers of biology, 14 B. Lysosomes in biology and pathology, vol. 2, ch. 18, p. 515–546, eds. J. T. Dingle and H. B. Fell. Amsterdam and London: North Holland Publishing Co. 1969.

    Google Scholar 

  • Beaufay, H., Duve, C. de: Tissue fractionation studies. 9. Enzymic release of bound hydrolases. Biochem. J. 73, 604–609 (1959).

    Google Scholar 

  • Berthet, J., Duve, C. de: Tissue fractionation studies. 1. The existence of a mitochondrial-linked enzymically inactive form of acid phosphatase in rat-liver tissue. Biochem. J. 50, 174–181 (1951).

    Google Scholar 

  • Bonnichsen, R. K., Chance, B., Theorell, H.: Catalase activity. Acta chem. scand. 1, 685–709 (1947).

    Google Scholar 

  • Bowen, I. D.: A high resolution technique for the fine-structural localisation of acid hydrolases. J. Microscopie 94, 25–38 (1971).

    Google Scholar 

  • Chakravorty, A. K.: Ribosomal RNA synthesis in the germinating black eye pea (Vigna unguiculata). 1. The effect of cycloheximide on RNA synthesis in the early stages of germination. Biochim. biophys. Acta (Amst.) 179, 67–82 (1969).

    Google Scholar 

  • Cohen, E., Shain, Y., Ben-Shaul, Y., Meyer, A. M.: Structural and enzymatic characterisation of plant zymogen bodies. Canad. J. Bot. 49, 2053–2057 (1971).

    Google Scholar 

  • Cooper, T. G., Beevers, H.: Mitochondria and glyoxysomes from castor bean endosperm. J. biol. Chem. 244, 3507–3513 (1969).

    PubMed  Google Scholar 

  • Corbett, J. R., Price, C. A.: Intracellular distribution of p-nitrophenylphosphatase in plants. Plant Physiol. 42, 827–830 (1967).

    Google Scholar 

  • Dixon, G. H., Kornberg, H. L.: Assay methods for key enzymes of the glyoxylate cycle. Biochem. J. 72, 3 P (1959).

    Google Scholar 

  • Fiske, C. H., Subba Row, Y.: The colorimetric determination of phosphorus. J. biol. Chem. 66, 375–400 (1925).

    Google Scholar 

  • Gregory, R. P. F.: A rapid assay for peroxidase activity. Biochem. J. 101, 582–583 (1966).

    Google Scholar 

  • Grossman, I. E., Heitkamp, D. H.: Electron microscopic localisation of mitochondrial adenosine triphosphatase activity. J. Histochem. Catochem. 16, 645–653 (1968).

    Google Scholar 

  • Hack, M. H.: Estimation of the phospholipides in human blood. J. biol. Chem. 169, 137–143 (1947).

    Google Scholar 

  • Heftmann, E.: Lysosomes in tomatoes. Cytobios 3, 129–136 (1971).

    Google Scholar 

  • Kalckar, H. M.: Differential spectrophotometry of purine compounds by means of specific enzymes. 1. Determination of hydroxy-purine compounds. J. biol. Chem. 167, 429–443 (1947).

    Google Scholar 

  • Koenig, H.: Histological distribution of brain gangliosides in lysosomes as glycolipoprotein granules. Nature (Lond.) 195, 782–784 (1962).

    Google Scholar 

  • Koenig, H.: Lysosomes in the nervous system. In: Frontiers of biology, 14 B. Lysosomes in biology and pathology, vol. 2, ch. 6, p. 111–162, eds. J. T. Dingle and H. B. Fell. Amsterdam and London: North Holland Publishing Co. 1969.

    Google Scholar 

  • Koenig, H., Gray, R.: Action of phospholipase C on lysosomes. J. Cell Biol. 23, 50 A (1964).

    Google Scholar 

  • Kramer, R., Lambrechter, R., Kaiser, E.: Release of acid hydrolases from lysosomes by animal venoms. Toxicon 9, 125–129 (1971).

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951).

    PubMed  Google Scholar 

  • Luft, J. H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961).

    Article  PubMed  Google Scholar 

  • Matile, P.: Lysosomes of root tip cells in corn seedlings. Planta (Berl.) 79, 181–196 (1968).

    Google Scholar 

  • Matile, P.: Plant Lysosomes. In: Frontiers of biology, 14 A. Lysosomes in biology and pathology, vol. 1, ch. 15, p. 406–430, eds. J. T. Dingle and H. B. Fell. Amsterdam and London: North Holland Publishing Co. 1969.

    Google Scholar 

  • Matile, P., Balz, J. P., Semadeni, E., Jost, M.: Isolation of sphersomes with lysosome characteristics from seedlings. Z. Naturw. 20b, 693–698 (1965).

    Google Scholar 

  • Matile, P., Moor, H.: Vacuolation: Origin and development of the lysosomal apparatus in root-tip cells. Planta (Berl.) 80, 159–175 (1968).

    Google Scholar 

  • Matile, P., Winkenbach, F.: Function of lysosomes and lysosomal enzymes in senescing corolla of the morning glory (Ipomoea purpurea). J. exp. Bot. 22, 759–771 (1971).

    Google Scholar 

  • McClurkin, I. T., McClurkin, D. C.: Cytochemical demonstration of a sodium-activated and a potassium-activated adenosine triphosphatase in loblolly pine seedling root tips. Plant Physiol. 42, 1103–1110 (1967).

    Google Scholar 

  • Mejbaum, W.: Über die Bestimmung kleiner Pentosemengen insbesondere in Derivaten der Adenylsäure. Hoppe-Seylers Z. physiol. Chem. 258, 117–120 (1939).

    Google Scholar 

  • Nachlas, M. M., Seligman, A. M.: Evidence for the specificity of esterase and lipase by the use of three chromogenic substrates. J. biol. Chem. 181, 343–345 (1949).

    Google Scholar 

  • Nesvadba, H.: Aminosäure-β-naphthylamide zur Aktivitätsbestimmung proteolytischer Fermente. Mh. Chem. 93, 386–396 (1962).

    Google Scholar 

  • Novikoff, A. B., Essner, E., Quintana, N.: Golgi apparatus and lysosomes. Fedn. Proc. Fedn. Amer. Socs. exp. Biol. 23, 1010–1022 (1964).

    Google Scholar 

  • Pitt, D., Coombes, C.: The disruption of lysosome-like particles of Solanum tuberosum cells during infection by Phytophthora erythroseplica Pethybr. J. gen. Microbiol. 53, 197–204 (1968).

    Google Scholar 

  • Pitt, D., Coombes, C.: Release of hydrolytic enzymes from cytoplasmic particles of Solanum tuber tissues during infection by tuber-rotting fungi. J. gen. Microbiol. 56, 321–329 (1969).

    Google Scholar 

  • Pitt, D., Galpin, M.: Increase in ribonuclease activity following mechanical damage to leaf and tuber tissues of Solanum tuberosum L. Planta (Berl.) 101, 317–332 (1971).

    Google Scholar 

  • Pitt, D., Galpin, M.: Role of lysosomal enzymes in pathogenicity. In: Fungal pathogenicity and the plant's response. 3rd Long Ashton Symposium, eds. R. J. W. Byrde and C. C. V. Cutting. London and New York: Academic Press Inc. 1972.

    Google Scholar 

  • Shibko, S., Pangborn, J., Tappel, A. L.: Studies on the release of lysosomal enzymes from kidney lysosomes. J. Cell Biol. 25, 479–482 (1965).

    Google Scholar 

  • Snyder, F., Stephens, N.: A simplified spectrophotometric determination of ester groups in lipids. Biochim. biophys. Acta (Amst.) 34, 244–245 (1959).

    Google Scholar 

  • Shaw, J. G.: Acid phosphatase from tobacco leaves. Arch. Biochem. 117, 1–9 (1966).

    Google Scholar 

  • Tolbert, N. E., Yamazaki, R. K.: Leaf peroxisomes and their relation to photorespiration and photosynthesis. Ann. N.Y. Acad. Sci. 168, 325–341 (1969).

    Google Scholar 

  • Waters, L. C., Dure, L. S.: Ribonucleic acid synthesis in germinating cotton seeds. J. molec. Biol. 19, 1–27 (1966).

    Google Scholar 

  • Watson, B. F., Dworkin, M.: Comparative intermediary metabolism of vegetative cells and microcysts of Myxococcus xanthus. J. Bact. 96, 1465–1473 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitt, D., Galpin, M. Isolation and properties of lysosomes from dark-grown potato shoots. Planta 109, 233–258 (1972). https://doi.org/10.1007/BF00387087

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00387087

Keywords

Navigation