Skip to main content
Log in

Xylem water flow in a crack willow tree (Salix fragilis L.) in relation to diurnal changes of environment

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

The diurnal course of the xylem water flow in a solitary Salix fragilis L. tree in a wet grassland was measured using the tissue heat-balance method. There was considerable variation due to meteorological factors. Maximum flow rate was 0.4 kg h-1 m-2 of crown projection area, or 5.9 kg h-1 kg-1 leaf dry weight. The daily total was 2.4 kg m-2 day-1 or 36 kg kg-1 day-1. Water flow decreased immediately at the tree base and at the branches after start of rain, and in a branch, after cutting it off: the time constant of the system was 600–700 s in both cases. The part of the crown oriented to the sun transpired up to ten times as much as the shaded part. Over 70% of the total cross-sectional area of the conductive xylem vessels of the trunk was used by the transpiration flow. The water content of the trunk tracked the diurnal changes of the xylem water flow rate with a short time-lag. During the day, 1% of the trunk volume was temporarily exploited as water reserve, an amount equalling 3% of daily water loss. The stereometric configuration of the crown significantly influenced its water loss. During the summer period, about 33 mature (polycormic) trees per ha may drain 100% of water consumed by the present-day sedge-grass marsh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arcikhovskiy VM (1931) Vsasyvanije vody děrevjami pri iskusstvennom vveděnii jejo čerez otvěrstvija vodonosnoj tkani. Trudy po lesnomu opytnomu dělu, CLOS, LL. 69-141

  • Balabán K (1955) Anatomie dřeva [Wood anatomy]. Praha: SZN 1955, p 210

    Google Scholar 

  • Čermák J, Deml M, Penka M (1973) A new method of sap flow rate determination in trees. Biol Plant 15: 171–178

    Google Scholar 

  • Čermák J, Kučera J (1981) The compensation of natural temperature gradient in the measuring point during the sap flow rate determination in trees. Biol Plant 23: 469–471

    Google Scholar 

  • Čermák J, Kučera J, Penka M (1976) Improvement of the method of sap flow rate determination in adult trees based on heat balance with direct electric heating of xylem. Biol Plant 18: 105–110

    Google Scholar 

  • Čermák J, Úlehla J, Kučera J, Penka M, (1982) Sap flow rate and transpiration dynamics in the full-grown oak (Quercus robur L.) in floodplain forest exposed to seasonal floods as related to potential evapotranspiration and tree dimensions. Biol Plant 24: 446–460

    Google Scholar 

  • Čermák J, Kučera J, Simon J, Dušek V (1983) The electric conductance of seedling stems and the water content of spruce and pine in the course of desiccation. Biol Plant 25: 468–471

    Google Scholar 

  • Cowan IR, Milthorpe FL (1968) Plant factors influencing the water status of plant tissues. In: Kozlowski TT (ed) Water deficits and plant growth. Academic Press, New York London. Vol 1, pp 137–193

    Google Scholar 

  • Daum CR (1967) A method for determining water transport in trees. Ecology 48: 425–431

    Google Scholar 

  • Davies WJ, Kozlowski TT (1974) Stomatal responses of five woody angiosperms to light intensity and humidity. Can J Bot 52: 1525–1534

    Google Scholar 

  • Greenidge KNH (1958) A note on the rates of upward travel of moisture under differing experimental conditions. Can J Bot 36: 357–361

    Google Scholar 

  • Heine RW (1970) Estimation of conductivity and conducting area of Poplar stems using a radioactive tracer. Annals of Botany 34: 1019–1024

    Google Scholar 

  • Heine RW (1971) Hydraulic conductivity in trees. J Exp Bot 22: 503–511

    Google Scholar 

  • Huber B (1932) Beobachtungen und Messungen pflanzlicher Saftströme. Ber dtsch bot Ges 50: 89–109

    Google Scholar 

  • Huber B (1956) Die Gefäßleitung. In: Stocker O (ed) Pflanzen und Wasser. Handbuch f Pflanzenphysiol Vol III, 541–582

  • Huber B, Schmidt E (1936) Weitere thermoelektrische Untersuchungen über den Transpirationsstrom der Bäume. Tharandter Forstliches Jahrbuch 87: 369–412

    Google Scholar 

  • Jarvis PG (1981) Plant water relations in models of tree growth. Studia Forestalia Suecica Nr 160, 51–60

  • Jeník J, Květ J (eds) (1983) Zaplavované ekosystémy u Třeboně [Flooded ecosystems near Třeboň]. Studie ČSAV, Praha 4: 1–147

  • Kreeb K (1966) Die Registrierung des Wasserzustandes über die elektrische Leitfähigkeit der Blätter. Ber dtsch bot Ges 79: 150–162

    Google Scholar 

  • Kučera J, Čermák J, Penka M (1977) Improved thermal method of continual recording the transpiration flow dynamics. Biol Plant 19: 413–420

    Google Scholar 

  • Landsberg JJ, Blanchard TW, Warrit B (1976) Studies on the movement of water through apple trees. J Exp Bot 27: 579–596

    Google Scholar 

  • Larcher W (1980) Ökologie der Pflanzen. Verlag Eugen Ulmer Stuttgart, p 400

    Google Scholar 

  • Limberger GE (1974) (Method of observing water flow in trees). Soviet Patent No. 407548

  • Linacre E (1976) Swamps. In: Vegetation and the atmosphere, Vol 2 Monteith JL (ed) Academic Press, London New York San Francisco, pp 329–347

    Google Scholar 

  • MacDougal DT (1925) Reversible variations in volume, pressure and movements of sap in trees. Washington: Carnegie Inst of Washington, p 90

    Google Scholar 

  • Mäde A (1975) Zur Berechnung der potentiellen Evapotranspiration nach Turc. Zeitschrift für Meteorologie, 25/1; 21–24

    Google Scholar 

  • McNaughton KG, Jarvis PG (1983) Predicting effects of vegetation changes on transpiration and evaporation. In: Water deficits and plant growth. Academic Press, Inc. Vol VII: pp 1–47

  • Monteith JL (1975) Principles of environmental physics. Edward Arnold, London, p 240

    Google Scholar 

  • Owston PW, Smith JL, Halverston HG (1972) Seasonal water movement in tree stems. Forest Science 18: 266–272

    Google Scholar 

  • Přibáň K, Ondok JP (1980) The daily and seasonal course of evapotranspiration from a central Europaean sedge-grass marsh. J Ecol 68: 547–559

    Google Scholar 

  • Přibáň K, Ondok JP (1984) Heat-balance component and evapotranspiration from a sedge-grass marsh. Folia geobot phytotax (in press)

  • Rychnovská M, Čermák J, Šmíd P (1980) Water output in a stand of Phragmites communis Trin. A comparison of three methods. Acta Sci Nat Brno 14 (2), 1–27

    Google Scholar 

  • Sinyukhin AM, Rutkovskii IV, Calkovič MS, Sokolova ES (1967) Koefficient poljarizacii kletok kak pokazatěl žizněsposobnosti drevěsnych rastenij. Elektronnaya obrabotka materialov 2(14): 75–86

    Google Scholar 

  • Tattar TA, Blanchard RO (1976) Electrophysiological research in plant pathology. Annual Review of Phytopathology 14: 309–325

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čermák, J., Jeník, J., Kučera, J. et al. Xylem water flow in a crack willow tree (Salix fragilis L.) in relation to diurnal changes of environment. Oecologia 64, 145–151 (1984). https://doi.org/10.1007/BF00376862

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00376862

Keywords

Navigation