Skip to main content
Log in

Organization of ribosomal protein genes rp123, rp12, rps19, rp122 and rps3 on the Euglena gracilis chloroplast genome

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The nucleotide sequence (4,814 bp) was determined for a cluster of five ribosomal protein genes and their DNA flanking regions from the chloroplast genome of Euglena gracilis. The genes are organized as rp123 — 150 by spacer — rpl2 — 59 by spacer —rps19 — 110 by spacer — rp122 — 630 by spacer — rps3. The genes are all of the same polarity and reside 148 bp downstream from an operon for two genes of photosystem I and four genes of photosystem II. The Euglena ribosomal protein gene cluster resembles the S-10 ribosomal protein operon of Escherichia coli in gene organization and follows the exact linear order of the analogous genes in the tobacco and liverwort chloroplast genomes. The number and positions of introns in the Euglena ribosomal protein loci are different from their higher plant counterparts. The Euglena rp123, rps19 and rps3 loci are unique in that they contain three, two and two introns, respectively, whereas rp12 and rp122 lack introns. The introns found in rpl23 (106, 99 and 103 bp), rps19 (103 and 97 bp) and rps3 intron 2 (102 bp) appear to represent either a new class of chloroplast intron found only in constitutively expressed genes, or possibly a degenerate version of Euglena chloroplast group II introns. They are deficient in bases C and G and extremely rich in base T, with a base composition of 53–76% T, 25–34% A, 3–10% G and 2–7% C in the mRNA-like strand. These six introns show minimal resemblance to group IT chloroplast introns. They have a degenerate version of the group II intron conserved boundary sequences at their 5′ and 3′ ends. No conserved internal secondary structures are apparent. By contrast, rps3 intron 1 (409 bp) has a potential group II core secondary structure. The five genes, rpl23 (101 codons), rpl2 (278 codons), rpsl9 (95 codons), rpl22 (114 codons) and rps3 (220 codons) encode lysine-rich polypeptides with predicted molecular weights of 12,152, 31,029, 10,880, 12,819, and 25,238, respectively. The Euglena gene products are 18–50%, and 29–58% identical in primary structure to their E. coli and higher plant counterparts, respectively. Oligonucleotide sequences corresponding to Euglena chloroplast ribosome binding sites are not apparent in the intergenic regions. Inverted repeat sequences are found in the upstream flanking region of rp123 and downstream from rps3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biggin MD, Gibson TJ, Hong GF (1983) Proc Natl Acad Sci USA 80:3963–3965

    Google Scholar 

  • Cech TR (1983) Cell 33:713

    Google Scholar 

  • Cushman JC, Hallick RB, Price CA (1988a) Curr Genet 13:159–172

    Google Scholar 

  • Cushman JC, Christopher DA, Little MC, Hallick RB, Price CA (1988b) Curr Genet 13:173–180

    Google Scholar 

  • Deng XW, Gruissem W (1987) Cell 49:479–487

    Google Scholar 

  • Ellis RJ (1981) Annu Rev Plant Physiol 32:111–137

    Google Scholar 

  • Eneas-Filho J, Hartley MR, Mache R (1981) Mol Gen Genet 184:484–488

    Google Scholar 

  • Fukuzawa H, Yoshida T, Kohchi T, Okumuru T, Sawano Y, Ohyama K (1987) FEBS Lett 220:61–66

    Google Scholar 

  • Erickson JM, Michele R, Rochaix JD (1984) EMBO J 3:2753–2762

    Google Scholar 

  • Gantt JS, Key JL (1986) Mol Gen Genet 202:186–193

    Google Scholar 

  • Gingrich JC, Hallick RB (1985a) J Biol Chem 260:16156–16161

    Google Scholar 

  • Gingrich JC, Hallick RB (1985b) J Biol Chem 260:16162–16168

    Google Scholar 

  • Graf L, Roux E, Stutz E, Kossel H (1982) Nucleic Acids Res 10:6369–6381

    Google Scholar 

  • Hallick RB, Richards OC, Gray PW (1982) In: Edelman M, Hallick RB, Chua N-H (eds) Methods in chloroplast molecular biology. Elsevier, New York, pp 281–294

    Google Scholar 

  • Hallick RB, Bottomley W (1983) Plant Mol Biol Rep 1:38–43

    Google Scholar 

  • Hallick RB, Gingrich JC, Johanningmeier U, Passavant CW (1985) In: Vloten-Doting L, Groot GSP, Hall TC (eds) Molecular form and function of the plant genome. NATO ASI Series, Vd 83 Plenum Publishing. New York, pp 211–220

    Google Scholar 

  • Henikoff S (1984) Gene 28:351–359

    Google Scholar 

  • Karabin GD, Farley M, Hallick RB (1984) Nucleic Acids Res 12:5801–5812

    Google Scholar 

  • Kimura M, Kimura J, Ashman K (1985a) Eur J Biochem 150: 491–498

    Google Scholar 

  • Kimura M, Kimura J, Watanabe K (1985b) Eur J Biochem 153:289–298

    Google Scholar 

  • Klein RR, Mason HS, Mullet JE (1988) J Cell Biol 106:289–301

    Google Scholar 

  • Koller B, Delius H (1984) Cell 36:613–622

    Google Scholar 

  • Koller B, Gingrich JC, Stiegler GL, Farley MA, Delius H, Hallick RB (1984) Cell 36:545–553

    Google Scholar 

  • Lindahl L, Archer R, Zengel JM (1983) Cell 33:241–248

    Google Scholar 

  • Lipman DJ, Pearson WR (1985) Science 227:1435–1441

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 90–91

    Google Scholar 

  • Manzara T, Hallick RB (1987) Nucleic Acids Res 15:3927

    Google Scholar 

  • Mark mann-Mulisch U, Knoblauch K, Lehmann A, Subramanian AR (1987) Biochem Int 15:1057–1067

    Google Scholar 

  • Michel F, Dujon B (1983) EMBO J 2:33–38

    Google Scholar 

  • Montadon PE, Stutz E (1983) Nucleic Acids Res 11:5877–5892

    Google Scholar 

  • Montadon P, Stutz E (1984) Nucleic Acids Res 12:2851–2859

    Google Scholar 

  • Montadon PE, Vasserot A, Stutz E (1986) Curr Genet 11:35–39

    Google Scholar 

  • Montadon PE, Knuchel-Aegerton C, Stutz E (1987) Nucleic Acids Res 15:7809–7822

    Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuch H, Ozeki H (1986) Nature 322:572–574

    Google Scholar 

  • Orozco E, Gray PW, Hallick RB (1980) J Biol Chem 255:10991–10996

    Google Scholar 

  • Passavant CW, Hallick RB (1985) Plant Mol Biol 4:347–354

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Schmidt RJ, Hosler JP, Gillham NW, Boynton JE (1984) J Cell Biol 98:2011–2018

    Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinaki K, Ohto C, Torawawa K, Meng BY, Sugita M, Deno H, Kanogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) EMBO J 5:2043–2049

    Google Scholar 

  • Spielmann A, Ronx E, Allmen JMV, Stutz E (1988) Nucleic Acids Res 16:1199

    Google Scholar 

  • Steege DA, Graves MC, Spermulli LL (1982) J Biol Chem 157: 10430–10439

    Google Scholar 

  • Stern DB, Gruissem W (1987) Cell 51:1145–1157

    Google Scholar 

  • Stiegler GL, Matthews HM, Bingham SE, Hallick RB (1982) Nucleic Acids Res 10: 3427–3444

    Google Scholar 

  • Tabor S, Richardson CC (1987) Proc Natl Acad Sci USA 84:4767–4771

    Google Scholar 

  • Tanaka M, Wakasugi T, Sugita M, Shinozaki K, Sugiura M (1986) Proc Natl Acad Sci USA 83:6030–6034

    Google Scholar 

  • Thompson WW, Whatley JM (1980) Annu Rev Plant Physiol 31:375–394

    Google Scholar 

  • Tinoco I, Borer PN, Dengler B, Levine MD, Uhlenbeck OC, Cruthers DM, Gralla J (1973) Nature New Biol 246:40–41

    Google Scholar 

  • Vieira J, Messing J (1987) Methods Enzymol 153:3–11

    Google Scholar 

  • Wittmann-Liebold B (1986) In: Hardesty B, Kramer G (eds) Structure, function and genetics of ribosomes. Springer, New York Berlin Heidelberg Tokyo, pp 326–361

    Google Scholar 

  • Zurawski G, Bottomley W, Whitfeld PR (1984) Nucleic Acids Res 12:6547–6558

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Abreviations: Gene names follow the convention of Hallick and Bottomley (1983): rp123, rpl2, rpl22 are, respectively, genes for the L23, L2, L22 polypeptides of the 50S ribosomal subunit; rps19 and rps3 are genes for the S19 and S3 polypeptides of the 30S ribosomal subunit

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christopher, D.A., Cushman, J.C., Price, C.A. et al. Organization of ribosomal protein genes rp123, rp12, rps19, rp122 and rps3 on the Euglena gracilis chloroplast genome. Curr Genet 14, 275–286 (1988). https://doi.org/10.1007/BF00376748

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00376748

Key words

Navigation