Skip to main content
Log in

An electron microscopic study of a lunar pyroxene

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Ion-thinned samples of lunar rock 12052 have been examined in the electron microscope. Exsolution textures have been observed in the pyroxene on a finer scale than those found in Apollo 11 rocks, indicating a faster cooling rate. The early stages of the reaction involve modulations on both (001) and (100) which suggest that decomposition may occur by a spinodal mechanism. A two-stage exsolution structure in the augite rim of a phenocryst is consistent with a sudden increase in the cooling rate—possibly when the magma was extruded onto the surface of the moon.

The presence of antiphase domains in all primary and precipitated pigeonites confirms that pigeonites of all compositions have the space group C2/c at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ardell, A. J., Nicholson, R. B., Eshelby, J. D.: On the modulated structure of aged Ni-Al alloys. Acta Met. 14, 1295–1309 (1966).

    Google Scholar 

  • Bailey, J. C., Champness, P. E., Dunham, A. C., Esson, J., Fyfe, W. S., MacKenzie, W. S., Stumpfl, E. F., Zussman, J.: Mineralogy and petrology of Apollo 11 lunar samples. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta, Suppl. 1, 1, 169–194 (1970).

    Google Scholar 

  • Bancroft, G. M., Bown, M. G., Gay, P., Muir, I. D., Williams, P. G. L.: Mineralogical and petrological investigation of some Apollo 12 samples. Second Lunar Sci. Conf. (unpublished proceedings, 1971).

  • Barber, D. J.: Thin foils of non-metals made for electron microscopy by sputter-etching. J. Materials Sci. 5, 1–8 (1970).

    Google Scholar 

  • Bence, A. E., Papike, J. J., Prewitt, C. T.: Apollo 12 clinopyroxenes: chemical trends. Earth Plan. Sci. Lett. 8, 393–399 (1970).

    Google Scholar 

  • Bown, M. G., Gay, P.: Observations on pigeonite. Acta Cryst. 10, 440–441 (1957).

    Google Scholar 

  • —: The identification of oriented inclusions in pyroxene crystals. Am. Mineralogist 44, 592–602 (1959).

    Google Scholar 

  • —: An X-ray study of exsolution phenomena in the Skaergaard pyroxenes. Mineral. Mag. 32, 379–388 (1960).

    Google Scholar 

  • Boyd, F. R.: Anatomy of a mantled pigeonite from Oceanus Procellarum. Carnegie Inst. Wash. Yearbook 69, 216–228 (1971).

    Google Scholar 

  • Cahn, J. W.: Spinodal decomposition. Trans. AIME 242, 166–180 (1968).

    Google Scholar 

  • Carter, N. L., Leung, I. S., Ave'Lallemant, H. G., Fernandez, L. A.: Growth and deformational structures in silicates from Mare Tranquillitatis. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta., Suppl. 1, 1, 267–285 (1970).

    Google Scholar 

  • Champness, P. E., Dunham, A. C., Gibb, F. G. F., Giles, H. N., MacKenzie, W. S., Stumpfl, E. F., Zussman, J.: Mineralogy and petrology of some Apollo 12 lunar samples. Proc. Second Lunar Sci. Conf. 1, 449–466 (1971).

    Google Scholar 

  • - Lorimer, G. W.: Lunar pyroxenes. Proc. 7th Intl. Elect. Microscopy Cong., Grenoble, 639–640 (1970).

  • Fisher, R. M., Marcinowski, M. J.: Direct observations of antiphase boundaries in the AuCu3 superlattice. Phil. Mag. 6, 1385–1405 (1961).

    Google Scholar 

  • Huston, E. L., Cahn, J. W., Hilliard, J. E.: Spinodal decomposition during continuous cooling. Acta Met. 14, 1053–1062 (1966).

    Google Scholar 

  • Korekawa, M. Nissen, H.-U., Philipp, D.: X-ray and electron-microscopic studies of a sodium-rich low plagioclase. Z. Krist. 131, 418–436 (1970).

    Google Scholar 

  • Morimoto, N., Tokonami, M.: Domain structure of pigeonite and clinoenstatite. Am. Mineralogist 54, 725–740 (1969a).

    Google Scholar 

  • —: Oriented exsolution of augite in pigeonite. Am. Mineralogist 54, 1101–1117 (1969b).

    Google Scholar 

  • Owen, D. C., McConnell, J. D. C.: Spinodal behaviour in an alkali feldspar. Nature Phys. Sci. 230, 118–119 (1971).

    Google Scholar 

  • Poldervaart, A., Hess, H. H.: Pyroxenes in the crystallisation of basaltic magma. J. Geol. 59, 472–489 (1951).

    Google Scholar 

  • Prewitt, C. T., Papike, J. J.: Cummingtonite: a reversible nonquenchable transition from P21/m to C2/m symmetry. Earth Plan. Sci. Lett. 8, 448–450 (1970).

    Google Scholar 

  • Radcliffe, S. V., Heuer, A. H., Fisher, R. M., Christie, J. M., Griggs, D. T.: High voltage (800 KV) electron petrography of Type B rooks from Apollo 11. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta, Suppl. 1, 1, 731–748 (1970).

    Google Scholar 

  • Ross, M., Bence, A. E., Dwornik, E. J., Clark, J. R., Papike, J. J.: Mineralogy of the lunar clinopyroxenes, augite and pigeonite. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta, Suppl. 1, 1, 839–848 (1970).

    Google Scholar 

  • - Huebner, J. S., Dowty, E.: Melting and sub-solidus phase relationships of augite and pigeonite from lunar rock 12021. Second Lunar Sci. Conf. (unpublished proceedings, (1971).

  • Yund, R. A., McCallister, R. H.: Kinetics and mechanisms of exsolution. Chem. Geol. 6, 5–30 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Champness, P.E., Lorimer, G.W. An electron microscopic study of a lunar pyroxene. Contr. Mineral. and Petrol. 33, 171–183 (1971). https://doi.org/10.1007/BF00374061

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00374061

Keywords

Navigation