Skip to main content
Log in

Pyroxenoids of pyroxmangite–pyroxferroite series from xenoliths of Bellerberg paleovolcano (Eifel, Germany): Chemical variations and specific features of cation distribution

  • Structure of Inorganic Compounds
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The pyroxferroite and pyroxmangite from xenoliths of aluminous gneisses in the alkaline basalts of Bellerberg paleovulcano (Eifel, Germany) have been studied by electron-probe and X-ray diffraction methods and IR spectroscopy. The parameters of the triclinic unit cells are found to be a = 6.662(1) Å, b = 7.525(1) Å, c = 15.895(2) Å, α = 91.548(3)°, β = 96.258(3)°, and γ = 94.498(3)° for pyroxferroite and a = 6.661(3) Å, b = 7.513(3) Å, c = 15.877(7) Å, α = 91.870(7)°, β = 96.369(7)°, and γ = 94.724(7)° for pyroxmangite; sp. gr. \(P\overline 1 \). The crystallochemical formulas (Z = 2) are, respectively, M(1–2)(Mn0.5Ca0.4Na0.1)2 M(3–6)(Fe, Mn)4 M7[Mg0.6(Fe, Mn)0.4][Si7O21] and M(1–3)(Mn, Fe)3 M(4–6)[(Fe, Mn)0.7Mg0.3]3 M7[Mg0.5(Fe, Mn)0.5][Si7O21]. For these and previously studied representatives of the pyroxmangite structural type, an analysis of the cation distribution over sites indicates wide isomorphism of Mn2+, Fe2+, and Mg in all cation M(1–7) sites and the preferred incorporation of Сa and Na into large seven-vertex M1O7 and M2O7 polyhedra and Mg into the smallest five-vertex M7O5 polyhedron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Liebau, Structural Chemistry of Silicates: Structure, Bonding and Classification (Springer, New York, 1985).

    Book  Google Scholar 

  2. Handbook on Minerals, Vol. 3, Issue 2 (Nedra, Moscow, 1981) [in Russian].

  3. N. V. Chukanov, S. M. Aksenov, R. K. Rastsvetaeva, et al., Zap. Vseross. Mineral. O-va 144 (2), 48 (2015).

    Google Scholar 

  4. D. R. Peacor and M. J. Buerger, Z. Kristallogr. 142, 450 (1962).

  5. R. J. Angel, Mineral. Mag. 49, 37 (1985).

    Article  Google Scholar 

  6. L. R. Pinckey and C. W. Burnham, Am. Mineral. 73, 798 (1988).

    Google Scholar 

  7. C. M. Aksenov, N. V. Shchipalkina, R. K. Rastsvetaeva, et al., Crystallogr. Rep. 60 (3), 340 (2015).

    Article  ADS  Google Scholar 

  8. W. E. Ford and W. M. Bradley, Am. J. Sci. 186, 169 (1913).

    Article  Google Scholar 

  9. F. Liebau, Naturmissenschaften 49, 48l (1962).

    Google Scholar 

  10. A. I. Brusnitsyn, Mineralogy of Manganese-Bearing Metamorphic Deposits in the Southern Urals (IPK KOSTA, St. Petersburg, 2013) [in Russian].

    Google Scholar 

  11. C. W. Burnham, Proc. II Lunar Science Conference (1971), Vol. 1, p. 47.

    Google Scholar 

  12. D. Smith and L. W. Finger, Carnegie Inst. Washington, Year Book 70, 133 (1971).

    Google Scholar 

  13. J. W. Frondel, Lunar Mineralogy (Wiley, New York, 1975).

    Google Scholar 

  14. A. Kato, Bull. Natl. Sci. Mus. (Tokyo) 15, 211 (1972).

    Google Scholar 

  15. F. Mancini, R. Alviola, B. Marshall, et al., Can. Mineral. 38 (5), 1103 (2000).

    Article  Google Scholar 

  16. G. Blass and H. W. Graf, Neufunde von bekannten Fundorten (20), Mineralien-Welt (1998), Vol. 9/1.

    Google Scholar 

  17. D. H. Lindsley and C. W. Burnham, Science 168, 364 (1970).

    Article  ADS  Google Scholar 

  18. H. Momoi, Mineral. J. Jpn. 7, 359 (1974).

    Article  Google Scholar 

  19. N. V. Chukanov, Infrared Spectra of Mineral Species: Extended Library (Springer, Dordrecht, 2014).

    Book  Google Scholar 

  20. L. Palatinus, Superflip—a Computer Program for Solution of Crystal Structures from X-Ray Diffraction Data in Arbitrary Dimension (Ecole Polytechnique Féderale de Lausanne, Lausanne, 2007).

    Google Scholar 

  21. V. Petrícek, M. Dušek, and L. Palatinus, Jana2006.Structure Determination Software Programs (Institute of Physics, Praha, Czech Republic, 2006).

    Google Scholar 

  22. R. K. Rastsvetaeva and S. M. Aksenov, Crystallogr. Rep. 56 (6), 910 (2011).

    Article  ADS  Google Scholar 

  23. Y. Ohashi and L. W. Finger, Carnegie Inst. Washington, Year Book 74, 564 (1975).

    Google Scholar 

  24. L. R. Pinckey and C. W. Burnham, Am. Mineral. 73, 809 (1988).

    Google Scholar 

  25. P. F. Zanazzi, F. Nestola, S. Nazzareni, et al., Am. Mineral. 93, 1921 (2008).

    Article  ADS  Google Scholar 

  26. H. Narita, K. Koto, and N. Morimoto, Mineral. J. Jpn. 8, 329 (1977).

    Article  Google Scholar 

  27. L. W. Finger and R. M. Hazen, Carnegie Inst. Washington, Year Book 77, 850 (1978).

    Google Scholar 

  28. R. D. Shannon and C. T. Prewitt, Acta Crystallogr. B 25, 925 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Shchipalkina.

Additional information

Original Russian Text © N.V. Shchipalkina, S.M. Aksenov, N.V. Chukanov, I.V. Pekov, R.K. Rastsvetaeva, C. Schäfer, B. Ternes, W. Shüller, 2016, published in Kristallografiya, 2016, Vol. 61, No. 6, pp. 896–904.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchipalkina, N.V., Aksenov, S.M., Chukanov, N.V. et al. Pyroxenoids of pyroxmangite–pyroxferroite series from xenoliths of Bellerberg paleovolcano (Eifel, Germany): Chemical variations and specific features of cation distribution. Crystallogr. Rep. 61, 931–939 (2016). https://doi.org/10.1134/S1063774516060146

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774516060146

Navigation