Skip to main content
Log in

Ultrabasic magmas and high-degree melting of the mantle

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

As the degree of melting of mantle peridotite increases, the liquids that are formed become more basic and less viscous, and the spacing between residual crystals increases. The settling velocities of residual crystals in partial melts consequently will increase by several orders of magnitude, from 9.4 × 10−4 cm/s to 4.3 × 10−1 cm/s for a 1 cm olivine grain, as the proportion of liquid increases from 15 to 60%.

To produce an ultrabasic komatiitic magma from a source with commonly assumed mantle composition requires 50 to 80% melting. Before this degree of melting can be reached, a highly fluid picritic magma produced by 30 to 50% melting will segregate from the source. Ultrabasic magmas probably form by a sequential melting process and are derived from a residuum composed of refractory minerals and trapped liquid left by previous episodes of partial melting and magma extraction. Trace element concentrations in ultrabasic komatiite lavas are consistent with this theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arndt, N.T.: Melting relations of ultramafic lavas (komatiites) at one atmosphere and high pressure. Carnegie Inst. Washington Yearbook 75, 555–561 (1976)

    Google Scholar 

  • Arndt, N.T., Naldrett, A.J., Pyke, D.R.: Komatiitic and iron-rich tholeiitic lavas of Munro Township, northeast Ontario. J. Petrol. 18, 319–369 (1977)

    Google Scholar 

  • Arth, J.G., Arndt, N.T., Naldrett, A.J.: Genesis of Archean komatiites — trace element evidence from Munro Township, Ontario. Geology, in press (1977)

  • Bickle, M.J., Hawkesworth, C.J., Martin, A., Nisbet, E.G., O'Nions, R.K.: Mantle compositions derived from the chemistry of ultramafic lavas. Nature 263, 577–580 (1976)

    Google Scholar 

  • Bottinga, Y., Weill, D.F.: Densities of liquid silicate systems calculated from partial molar volumes of oxide components. Am. J. Sci. 269, 169–182 (1970)

    Google Scholar 

  • Bottinga, Y., Weill, D.F.: The viscosity of magmatic silicate liquids: a model for calculation. Am. J. Sci. 272, 438–475 (1972)

    Google Scholar 

  • Boyd, F.R., McCallister, R.H.: Densities of fertile and sterile garnet peridotites. Geophys. Res. Lett. 3, 509–512 (1976)

    Google Scholar 

  • Brooks, C., Hart, S.R.: An extrusive basaltic komatiite from a Canadian Archean metavolcanic belt. Can. J. Earth Sci. 9, 1250–1253 (1972)

    Google Scholar 

  • Brooks, C., Hart, S.R.: On the significance of komatiite. Geology 2, 107–110 (1974)

    Google Scholar 

  • Carmichael, I.S.E., Turner, F.S., Verhoogen, J.: Igneous Petrology, 739 pp. New York: McGraw-Hill 1974

    Google Scholar 

  • Cawthorn, R.G.: Degrees of melting in mantle diapirs and the origin of ultrabasic liquids. Earth Planet. Sci. Lett. 23, 113–120 (1975)

    Google Scholar 

  • Cawthorn, R.G., Strong, D.F.: The petrogenesis of komatiites and related rocks as evidence for a layered upper mantle. Earth Planet Sci. Lett. 27, 369–375 (1975)

    Google Scholar 

  • Gast, P.W.: Trace element fractionation and the origins of tholeiitic and alkaline magma types. nGeochim. Cosmochim. Acta 32, 1057–1068 (1968)

    Google Scholar 

  • Green, D.H.: The origin of basaltic and nephelinitic magmas. Trans. Leicester Lit. Philos. Soc. 64, 28–54 (1970)

    Google Scholar 

  • Green, D.H.: Archean greenstone belts may include terrestrial equivalents of lunar maria? Earth Planet. Sci. Lett. 15, 263–270 (1972)

    Google Scholar 

  • Green, D.H., Nicholls, I.A., Viljoen, M.J., Viljoen, R.P.: Experimental demonstration of the existence of peridotitic liquids in earliest Archean magmatism. Geology 3, 11–15 (1975)

    Google Scholar 

  • Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics, 553 pp. Leyden: Noordhoff International Publishing 1973

    Google Scholar 

  • Irvine, T.N.: Heat transfer during solidification of layered intrusions. I. Sheets and sills. Can. J. Earth Sci. 7, 1031–1061 (1970)

    Google Scholar 

  • Kushiro, I., Yoder, H.S., Jr., Mysen, B.O.: Viscosities of basalt and andesite melts at high pressures. J. Geophys. Res. 81, 6351–6356 (1977)

    Google Scholar 

  • Lewis, J.D., Williams, I.R.: The petrology of an ultramafic lava flow near Murphy Well, Eastern Goldfields, Western Australia. West Aust. Geol. Surv. Ann. Rep. 1972, 60–68

  • McIver, J.R., Lenthall, D.H.: Mafic and ultramafic extrusives of the Onverwacht Group in terms of the system XO-YO-R2O3-ZO2. Univ. Witwatersrand, Econ. Geol. Res. Unit. Info. Circ., No. 80 (1973)

  • Mehnert, K.R., Busch, W., Schneider, G.: Initial melting at grain boundaries of quartz and feldspar in gneisses and granulites. Neues Jahrb. Mineral., Monatsh. 1973, 165–183

  • Mysen, B.O., Holloway, J.R.: Experimental determination of rare earth fractionation patterns in partial melts from peridotite in the upper mantle. Earth Planet. Sci. Lett., in press (1977)

  • Mysen, B.O., Kushiro, I.: Compositional variations of coexisting phases with degree of melting of peridotite in the upper mantle. Am. Mineralogist, in press (1977)

  • Naldrett, A.J., Turner, A.R.: The geology and petrogenesis of a greenstone belt and related nickel sulphide mineralisation at Yakabindie, Western Australia. Precambrian Research, in press (1977)

  • Nesbitt, R.W., Sun, S.S.: Geochemistry of Archean spinifex textured peridotites and magnesian and low magnesian tholeiites. Earth Planet. Sci. Lett., 31, 433–453 (1976)

    Google Scholar 

  • Nixon, P.H., Boyd, F.R.: Petrogenesis of the granular and sheared ultrabasic nodule suite in kimberlites. In: P.H. Nixon (Ed.), Lesotho Kimberlites, pp. 48–56. Cape Town: Cape and Transvaal Printers 1973

    Google Scholar 

  • O'Hara, M.J.: The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth-Sci. Rev. 4, 69–133 (1968)

    Google Scholar 

  • O'Hara, M.J., Saunders, M.J., Mercy, E.P.L.: Garnet-peridotite, primary ultrabasic magma and eclogites; interpretation of upper mantle processes in kimberlite. Phys. Chem. Earth 9, 571–604 (1975)

    Google Scholar 

  • Ramberg, H.: Mantle diapirism and its tectonic and magmagenetic consequences. Phys. Earth Planet. Inter. 5, 45–60 (1972)

    Google Scholar 

  • Ringwood, A.E.: Composition and petrology of the earth's mantle, 618 pp. New York: McGraw-Hill 1975

    Google Scholar 

  • Shaw, H.R.: Rheology of basalt in the melting range. J. Petrol. 10, 510–535 (1969)

    Google Scholar 

  • Sleep, N.H.: Segregation of magma from a mostly crystalline mush. Geol. Soc. Am. Bull. 85, 1225–1232 (1974)

    Google Scholar 

  • Sun, S.S., Nesbitt, R.W.: Petrogenesis of Archean ultrabasic and basic volcanics: evidence from rare earth elements. Contrib. Mineral. Petrol, in press (1977)

  • Viljoen, R.P., Viljoen, M.J.: Evidence for the composition of the primitive mantle and its products of partial melting from a study of the rocks of the Barberton Mountain Land. Geol. Soc. S. Aft., Spec. Publ. 2, 275–296 (1969)

    Google Scholar 

  • Weertman, J.: Coalescence of magma pockets into large pools in the upper mantle. Geol. Soc. Am. Bull. 83, 3531–3532 (1972)

    Google Scholar 

  • White, I.G.: Ultrabasic rocks and the composition of the upper mantle. Earth Planet. Sci. Lett. 3, 11–18 (1967)

    Google Scholar 

  • Wyllie, P.J.: The dynamic earth, 416 pp. New York: John Wiley & Sons, Inc. 1971

    Google Scholar 

  • Yoder, H.S., Jr.: Generation of basaltic magma, 265 pp. Washington, D.C.: National Academy of Sciences 1976

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arndt, N.T. Ultrabasic magmas and high-degree melting of the mantle. Contr. Mineral. and Petrol. 64, 205–221 (1977). https://doi.org/10.1007/BF00371512

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371512

Keywords

Navigation