Skip to main content
Log in

Sea water basalt interaction in spilites from the Iberian Pyrite Belt

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Low grade hydrothermally metamorphosed mafic rocks from the Iberian Pyrite Belt are enriched in 18O relative to the oxygen isotopic ratio of fresh basalt (+6.5±1‰). The observed δ 18O whole rock values range from +0.87‰ to +15.71‰ corresponding to positive isotopic shifts of +5‰ to +10‰, thus requiring isotopic exchange with fluids under conditions of high water:rock ratios at low temperatures. The lowest δ 18O observed corresponds to an albitized dolerite still and is compatible with independent geochemical data suggesting lower water: rock ratios for the alteration of these rocks.

The isotope data are consistent with the hypothesis that the spilites from the Pyrite Belt were produced by interaction of basaltic material with sea water.

Significant leaching of transition metals from the mafic rocks during alteration coupled with available sulphur isotopic data for the sulphide ores also suggest that sea water may have played an important role in the formation of ore deposits in the Iberian Pyrite Belt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguirre L, Beatriz L, Offler R (1978) Unconformities as mineralogical breaks in the burial metamorphism of the Andes. Contrib Mineral Petrol 66:361–366

    Google Scholar 

  • Andrews AJ, Fyfe WS (1975) Metamorphism and massive sulphide generation in oceanic crust. Geosci Can 3(2):84–94

    Google Scholar 

  • Bernard AJ, Soler E (1974) Aperçu sur la province pyriteuse sudibérique. Centenaire Soc Geol Belgique, Liège, 287–315

    Google Scholar 

  • Bischoff JL, Dickson FW (1975) Seawater-basalt interaction at 200° C and 500 bars: implications for origin of sea-floor heavy metal deposits and regulation of seawater chemistry. Earth Planet Sci Lett 25:385–397

    Google Scholar 

  • Bjornsson S, Arnorsson S, Tomasson J (1972) Economic evaluation of Reykjanes thermal brine area, Iceland. Am Assoc Petrol Geol Bull 56:2380–2391

    Google Scholar 

  • Carmichael ISE, Turner FJ, Verhoogen J (1974) Igneous Petrology. Mcgraw-Hill Book Co

  • Carvalho D (1976) Considerações sobre o volcanismo da região de Cercal-Odmira. Suas relações com a faixa piritosa. Comun Serv Geol Port 60:215–238

    Google Scholar 

  • Carvalho D (1977) Lineament patterns and hypogene mineralization in Portugal. “Estudos Notas e Trabalhos” do S.F.M. XXIII(3–4):91–106

    Google Scholar 

  • Carvalhosa AB (1961) Contribuição para o estudo dos ofiolitos do Baixo Alentejo — Espilitos da região de Castro Verde-Messejana. Comun Serv Geol Port 45:371–390

    Google Scholar 

  • Clayton RN, Mayeda TK (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim Cosmochim Acta 27:43–52

    Google Scholar 

  • Clayton RN, O'Neil JR, Mayeda TK (1972) Oxygen isotope exchange between quartz and water. J Geophys Res 77:3057–3067

    Google Scholar 

  • Crerar DA, Barnes HL (1976) Ore solution chemistry V. Solubilities of chalcopyrite and chalcocite in hydrothermal solution at 200° C to 350° C. Econ Geol 71:772–794

    Google Scholar 

  • Cruz Gaspar O (1961) A associação genética dos espilitos com os jazigos de manganês do Baixo Alentejo. “Estudos Notase Trabalhos” S.F.M. XV(1–2):177–196

    Google Scholar 

  • Edmond JM, Measures C, Mangum B, Grant B, Sclater FR, Collier R, Hudson A, Gordon LL, Corliss JB (1979) On the formation of metal-rich deposits at ridge crests. Earth Planet Sci Lett 46:19–30

    Google Scholar 

  • Ellis AJ (1979) Explored geothermal systems. In: H.L. Barnes (ed) Geochemistry of Hydrothermal Ore Deposits 2nd edn. Holt, Rinehart and Winston, New York, p 632–683

    Google Scholar 

  • Ellis AJ, Mahon WAJ (1964) Natural hydrothermal systems and experimental hot water/rock interactions. Geochim Cosmochim Acta 28:1323–1357

    Google Scholar 

  • Ellis AJ, Mahon WAJ (1967) Natural hydrothermal systems and experimental hot water/rock interactions, Pt. 2. Geochim Cosmochim Acta 31:519–538

    Google Scholar 

  • Forester RW, Taylor HP (1976) 18O-depleted igneous rocks from the Tertiary complex of the Isle of Mull, Scotland. Earth Planet Sci Lett 32:11–17

    Google Scholar 

  • Fyfe WS (1974) Hydrosphere solid-earth interaction. Proc Geol Assoc Can. National Conference, St. John's, Newfoundland, p 763–772

  • Garcia Palomero F (1977) Caracteres geologicos y relaciones morfologicas y geneticas de las mineralizaciones del “anticlinal de Rio Tinto”. Acta Salmanticensia, Tesis de Ciencias

  • Hajash A Jr (1975) Hydrothermal processes along mid-ocean ridges: an experimental investigation. Contrib Mineral Petrol 53:205–226

    Google Scholar 

  • Heaton THE, Sheppard SMF (1977) Hydrogen and oxygen isotope evidence for sea-water-hydrothermal alteration and ore deposition, Troodos, Cyprus. In: Volcanic Processes in Ore Genesis. London: Inst Mining and Metallurgy and Geological Society, pp 42–57

    Google Scholar 

  • Helgeson HC (1970) A chemical and thermodynamic model of ore deposition in hydrothermal systems. Mineral Soc Am Spec Pap 3:155–186

    Google Scholar 

  • Hemley JJ (1959) Some mineralogical equilibria in the system K2O-Al2O3-SiO2-H2O. Am J Sci 257:241–270

    Google Scholar 

  • Hoefs J (1973) Stable Isotope Geochemistry. Springer Verlag, New York

    Google Scholar 

  • Honnorez J, Kirst P (1975) Petrology of rodingites from the equatorial mid-Atlantic fracture zones and their geotectonic significance. Contrib Mineral Petrol 49:233–257

    Google Scholar 

  • Javoy M (1977) Stable isotopes and geothermometry J Geol Soc, London 133:609–636

    Google Scholar 

  • Keith TEC, Muffler LJP, Cremer M (1968) Hydrothermal epidote formed in the Salton Sea geothermal system, California. Am Mineral 53:1635–1644

    Google Scholar 

  • Kinkel Jr AR (1962) Observations on the pyrite deposits of the Huelva District, Spain, and their relation to volcanism. Econ Geol 57(7):1071–1080

    Google Scholar 

  • Kleyn HFW (1960) Contribution to the geology of the Odemira-Sao Luis region (Southern Protugal). Meded Geol Inst Univ. Amsterdam 255:114

    Google Scholar 

  • Knauth PL, Lowe DR (1978) Oxygen isotope geochemistry of cherts from the Onverwacht Group (3.4 billion years), Transvaal, South Africa, with implications for secular variations in the isotopic composition of cherts. Earth Planet Sci Lett 41:209–222

    Google Scholar 

  • Kristmannsdottir H, Tomasson J (1978) Zeolite zones in geothermal areas in Iceland. In: Sand L.B. and Mumpton F.A. (eds) Natural Zeolites, Occurrence, Properties, Use Pergamon Press, p 277–284

  • Lapwood ER (1948) Convection of a fluid in a porous medium. Proc Cambridge Philos Soc 44:508–521

    Google Scholar 

  • Liou JG (1971) Synthesis and stability relations of prehnite, Ca2Al2 Si3O10(OH)2. Am Mineral 56:507–531

    Google Scholar 

  • Lister CRB (1972) On the thermal balance of a mid-ocean ridge. Geophys JR Astron Soc 26:515–535

    Google Scholar 

  • Lister CRB (1974) On the penetration of water into hot rock. R Astron Soc Geophys J 39:465–509

    Google Scholar 

  • Mathews A, Beckinsale RD (1979) Oxygen isotope equilibration systematics between quartz and water. Am Mineral 64:232–240

    Google Scholar 

  • Motll M, Holland HD (1978) Chemical exchange during hydrothermal alteration of basalt by sea water — I. Experimental results for major and minor components of seawater. Geochim Cosmochim Acta 42:1103–1115

    Google Scholar 

  • Muehlenbachs K, Clayton RN (1972) Oxygen isotope studies of fresh and weathered submarine basalts. Can J Earth Sci 9:172–184

    Google Scholar 

  • Munhá J (1976) Nota preliminar sobre o metamorfismo na Faixa Piritosa Portuguesa. Comun Serv Geol Port LX:151–161

    Google Scholar 

  • Munhá J (1979) Blue amphiboles, metamorphic regime and plate tectonic modelling in the Iberian Pyrite Belt. Contrib Mineral Petrol 69:279–289

    Google Scholar 

  • Norton D, Knight J (1977) Transport phenomena in hydrothermal systems: cooling plutons. Am J Sci 277:937–981

    Google Scholar 

  • Norton D, Cathles LM (1979) Thermal aspects of ore deposition. In: HL Barnes (ed) Geochemistry of Hydrothermal Ore Deposits 2nd edn. Holt, Rhinehart and Winston, New York, p 611–631

    Google Scholar 

  • Norton D, Taylor HP (1979) Quantitative simulation of the hydrothermal systems of crystallizing magmas on the basis of transport theory and oxygen isotope data: an analysis of the Skaergaard intrusion. J Petrol 20(3):421–486

    Google Scholar 

  • Ohmoto H (1972) Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ Geol 67:551–579

    Google Scholar 

  • Ohmoto H, Rye OR (1974) Hydrogen and oxygen isotope compositions of fluid inclusions in the Kuroko deposits, Japan. Econ Geol 69:947–953

    Google Scholar 

  • Ohmoto H, Rye OR (1979) Isotopes of sulfur and carbon. In: HL Barnes (ed) Geochemistry of Hydrothermal Ore Deposits 2nd edn. Holt-Rhinehart and Winston, New York, p 509–567

    Google Scholar 

  • Oliveira VMJ (1971) Breve nota sobre a alteração meteorica do grande filão doleritico do Alentejo e paleogeografia das formações encaixantes. I Chilage, Secção 4:Vol. 2, 781–786

    Google Scholar 

  • Pearce JA, Cann JR (1973) Tectonic setting of basic rocks determined using trace element analysis. Earth Planet Sci Lett 19:290–300

    Google Scholar 

  • Rambaud Perez F (1970) El sinclinal Carbonifero de Rio Tinto y sus mineralizaciones asociadas. Mem Inst Geol Mineral Espana 71:229p

    Google Scholar 

  • Routhier P, Lecolle M, Roger G, Aye F, Molière P, Boyer C, Picot P (1977) Amas sulfures volcano-sédimentaires. La ceinture sud-ibérique à amas sulfures dans sa partie espagnole médiane. Tableau géologique et métallogénétique. Rapport final de l'action concertée. DGRST n∘ 74–7:1181

    Google Scholar 

  • Schermerhorn LJG (1970) Mafic geosynclinal volcanism in the lower Carboniferous of South Portugal. Geol en Mijnb 48(6):439–449

    Google Scholar 

  • Schermerhorn LJG (1971a) An outline stratigraphy of the Iberian Pyrite Belt. Bol Geol Mineral 82(III–IV):239–268

    Google Scholar 

  • Schermerhorn LJG (1971b) Pyritite emplacement by gravity flow. Bol Geol Mineral 82(III–IV):304–308

    Google Scholar 

  • Schermerhorn LJG (1975a) Pumpellyite facies metamorphism in the Spanish Pyrite Belt. Petrologie I(1):71–86

    Google Scholar 

  • Schermerhorn LJG (1975b) Spilites, regional metamorphism and subduction in the Iberian Pyrite Belt. Some comments. Geol. en Mijnb. 54(1–2):23–35

    Google Scholar 

  • Seyfried W, Bischoff JL (1977) Hydrothermal transport of heavy metals by sea water: the role of seawater/basalt ratios. Earth Planet Sci Lett 34:71–77

    Google Scholar 

  • Sheppard SMF (1977) Identification of the origin of ore-forming solutions by the use of stable isotopes. In: Volcanic Processes in Ore Genesis.(London: Institution of Mining and Metallurgy and Geological Society, p 25–41

    Google Scholar 

  • Spooner ETC (1977) Hydrodynamic model for the origin of the ophiolitic cupriferous pyrite ore deposits of Cyprus. In: Volcanic Processes in Ore Genesis. London: Institution of Mining and Metallurgy and Geological Society, p 58–71

    Google Scholar 

  • Spooner ETC, Beckinsale RD, England PC, Senior A (1977) Hydration, 18O enrichment and oxydation during ocean floor hydrothermal metamorphism of ophiolitic meta-basic rocks from E. Liguria, Italy. Geochim Cosmochim Acta 41:857–871

    Google Scholar 

  • Spooner ETC, Beckinsale RD, Fyfe WS, Smewing JD (1974) 18O enriched ophiolitic metabasic rocks from E. Liguria (Italy), Pindos (Greece), and Troodos (Cyprus). Contrib Mineral Petrol 47:41–62

    Google Scholar 

  • Spooner ETC, Fyfe WS (1973) Sub-sea-floor metamorphism, heat and mass transfer. Contrib Mineral Petrol 42:287–304

    Google Scholar 

  • Soler E (1973) L'association spilites quartz keratophyres du SudOuest de la Peninsule ibérique. Geol en Mijnb 52(5):277–288

    Google Scholar 

  • Strauss GK (1970) Sobre a geologia de la provincia piritifera del Suroeste de la Peninsula Iberica y de sus yacimentos, en especial sobre la mina de pirita de Lousal (Portugal). Mem Inst Geol Mineral Espana 77

  • Strauss GK, Madel J, Alonso FF (1977) Exploration practice for strata-bound volcanogenic sulphide deposits in the Spanish-Portuguese Pyrite Belt. In: DD Klemm and HY Schneider (eds) Time-and-Strata-Bound Ore Deposits Springer p 56–91 Berlin Heidelberg New York

    Google Scholar 

  • Taylor HP (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol 69:843–883

    Google Scholar 

  • Taylor HP (1979) Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: HL Barnes (ed) Geochemistry of Hydrothermal Ore Deposits, 2nd edn. Hold, Rinehart and Winston, New York p 236–277

    Google Scholar 

  • Tomasson J, Kristmannsdottir H (1972) High temperature alteration minerals and thermal brines, Reykjanes, Iceland. Contrib Mineral Petrol 36:123–134

    Google Scholar 

  • Wenner DB, Taylor HP (1971) Temperatures of serpentinization of ultramafic rocks based on 18O/16O fractionation between co-existing serpentine and magnetite. Contrib Mineral Petrol 32:165–185

    Google Scholar 

  • Williams D (1966) Volcanism and are deposits. Freiberger Forsch. C210:93–111

    Google Scholar 

  • Williams D, Stanton RL, Rambaud F (1975) The Planes-San Antonio pyritic deposit of Rio Tinto, Spain: its nature environment and genesis. Trans. Inst. Mineral Metall 84:B73-B82

    Google Scholar 

  • Wolery TJ, Sleep NH (1976) Hydrothermal circulation and geochemical flux at mid-ocean ridges. J Geol 84:249–275

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munhá, J., Kerrich, R. Sea water basalt interaction in spilites from the Iberian Pyrite Belt. Contr. Mineral. and Petrol. 73, 191–200 (1980). https://doi.org/10.1007/BF00371394

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371394

Keywords

Navigation