Skip to main content
Log in

Effect of cattle slurry in grassland on microbial biomass and on activities of various enzymes

  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

We examined the long-term effects of cattle slurry, applied at high rates, on microbial biomass, respiration, the microbial quotient (qCO2) and various soil enzyme activities. In March, June, July, and October 1991, slurry-amended grassland soils (0–10 cm) contained significantly higher levels of microbial biomass, N mineralization and enzyme activities involved in N, P, and C cycling. With microbial biomass as the relative value, the results revealed that the slurry treatment influenced enzyme production by the microbial biomass. High levels of urease activity were the result not only of a larger microbial biomass, but also of higher levels of enzmye production by this microbial biomass. The ratio of alkaline phosphatase and xylanase to microbial biomass was nearly constant in the different treatments. The metabolic quotient (qCO2) declined with increased levels of slurry application. Therefore it appears that microorganisms in slurry-amended soils require less C and energy if there is no competition for nutrients. The results of this study suggest that urease activity, nitrification, and respiration (metabolic quotient) can be used as indicators of environmental stress, produced by heavy applications of cattle slurry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson J, Domsch K (1978) A physiological method for quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221

    Google Scholar 

  • Beck T (1984) Methods and application of soil microbiological analysis at the Landesanstalt für Bodenkultur und Pflanzenbau (LBB) in Munich for the determination of some aspects of soil fertility. In: Nemes MP, Kiss S, Papacostea P, Stefanic G, Rusan M (eds) Fifth Symp Soil Biol. Romanian Nat Soc Soil Sci, Bucharest, pp 13–20

    Google Scholar 

  • Berg F, Rosswall T (1985) Ammonium oxidizer numbers, potential and actual oxidation rates in two Swedish arable soils. Biol Fertil Soils 1:131–140

    Google Scholar 

  • Dick RP (1992) A review: Long-term effects of agricultural systems on soil biochemical and microbial parameters. Agric Ecosyst Environ 40:25–36

    Google Scholar 

  • Dick WA, Tabatabai MA (1992) Significance and potential uses of soil enzymes. In: Meeting FB Jr (ed) Soil microbial ecology. Marcel Decker, New York, Basel, Hong Kong, pp 95–130

    Google Scholar 

  • Eder G (1991) Stickstoff-und Phosphoraustrag unter Dauergrünland, ermittelt in Lysimetern. Bericht über die Gumpensteiner Lysimetertagung “Art der Sickerwassergewinnung und Ergebnisinterpretation”, Bundesanstalt für Alpenländische Landwirtschaft Gumpenstein, pp 45–51

  • Insam H, Domsch KH (1988) Relationship between soil organic carbon and microbial biomass on chronosequence of reclamation sites. Microb Ecol 15:177–188

    Google Scholar 

  • Insam H, Haselwandter K (1989) Metabolic quotient of the soil microflora in relation to plant succession. Oecologia 79:174–178

    Google Scholar 

  • Insam H, Mitchell CC, Dormaar JF (1991) Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three Ultisols. Soil Biol Biochem 23:459–464

    Google Scholar 

  • Jäggi W (1976) Die Bestimmung der CO2-Bildung als Mass der bodenbiologischen Aktivität. Schweiz Landwirtsch Forsch 15:371–380

    Google Scholar 

  • Kandeler E, Eder G (1990) Bodenmikrobiologische Prozesse und Aggregatstabilität einer 25-jährigen Dauerbrachefläche mit unterschiedlicher mineralischer und organischer Düngung. Mitt Dtsch Bodenkd Ges 62:63–66

    Google Scholar 

  • Keeney DR (1992) Nitrogen — availability indices. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, Part 2. Am Soc Agron, Madison, Wisconsin, pp 711–733

    Google Scholar 

  • Laanbroek HJ, Gerards S (1991) Effects of organic manure on nitrification in arable soils. Biol Fertil Soils 12:147–153

    Google Scholar 

  • Martens DA, Johanson JB, Frankenberger WT Jr (1992) Production and persistence of soil enzymes with repeated addition of organic residues. Soil Sci 153:53–61

    Google Scholar 

  • Nannipieri P, Muccini L, Ciardi C (1983) Microbial biomass and enzyme activities: Production and persistence. Soil Biol Biochem 15:679–685

    Google Scholar 

  • Nannipieri P, Grego S, Ceccanti B (1990) Ecological significance of the biological activity in soil. In: Bollag JM, Stotzky G (eds) Soil Biochemistry, Volume 6. Marcel Dekker, New York, Basel, pp 293–357

    Google Scholar 

  • Schinner F, Öhlinger R, Kandeler E (1991) Bodenbiologische Arbeitsmethoden. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Stadelmann FX (1982) Die Wirkung steigender Gaben vonKlärschlamm und Schweinegülle in Feldversuchen. II. Auswirkungen auf Population und Aktivität von Bodenmikroorganismen. Schweiz Landwirtsch Forsch 21:239–259

    Google Scholar 

  • Zantua MI, Bremner JM (1976) Production and persistence of urease activity in soils. Soil Biol Biochem 8:369–374

    Google Scholar 

  • Zanatua MI, Bremner JM (1977) Stability of urease in soils. Soil Biol Biochem 9:135–140

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandeler, E., Eder, G. Effect of cattle slurry in grassland on microbial biomass and on activities of various enzymes. Biol Fert Soils 16, 249–254 (1993). https://doi.org/10.1007/BF00369300

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369300

Key words

Navigation