Skip to main content
Log in

Thermal degradation mechanisms of Nicalon fibre:a thermodynamic simulation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermodynamic calculations for the thermal degradation of the Nicalon fibre in inert gas flow at atmospheric pressure have been performed, based on minimization of the Gibbs energy of the Si-C-O-H chemical system. The calculations are based on a critically selected thermodynamic database of the participating compounds. The results are presented by means of diagrams illustrating the quantities of condensed and gaseous species obtained as a function of treatment temperature. These are compared with recently reported TEM studies of as-received and heat-treated material, which illustrate the sequential morphologies of its structure and nanotexture as a function of treatment temperature. The main step of the observed degradation mechanism is successfully simulated in terms of the temperature, the oxygen content and the weight loss of the material. An endogenous oxidation mechanism is proposed for degradation of the fibre.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Le Coustumer, M. Monthioux and A. Oberlin, J. Eur. Ceram. Soc. 11 (1993) 95.

    Article  Google Scholar 

  2. P. Schreck, C. Vix-Guterl, P. Ehrburger and J. Lahaye, J. Mater. Sci. 27 (1992) 4237.

    Article  CAS  Google Scholar 

  3. Idem, ibid. P. Schreck, C. Vix-Guterl, P. Ehrburger and J. Lahaye, J. Mater. Sci. 27 (1992) 4243.

    Article  CAS  Google Scholar 

  4. L. Porte and A. Sartre, 24 (1989) 271.

    Article  CAS  Google Scholar 

  5. C. Laffon, A. M. Flank, P. Lagarde, M. Laridjani, R. Hagege, P. Olry, J. Cotteret, J. Dixmier, J. L. Miquel, H. Hommel and A. P. Legrand, 24 (1989) 1503.

    Article  CAS  Google Scholar 

  6. T. Mah, N. L. Hecht, D. E. McCullum, J. R. Hoenigman, H. M. Kim, A. P. Katz and H. A. Lipsitt,, 19 (1984) 1191.

    Article  CAS  Google Scholar 

  7. T. J. Clark, R. M. Arons and J. B. Stamatoff, Ceram. Eng. Sci. Proc. 6 (1985) 576.

    Article  CAS  Google Scholar 

  8. S. M. Johnson, R. D. Brittain, R. H. Lamoreaux and D. J. Rowcliffe, J. Amer. Ceram. Soc. 71 (1988) C132.

    CAS  Google Scholar 

  9. T. Shimoo, M. Sugimoto and K. Okamura, Nippon Seramikkusu kyokai Gakujutsu Rombunshi (J. Ceram. Soc. Jpn) 98 (1990) 1324.

    Article  CAS  Google Scholar 

  10. T. Shimoo, M. Sugimoto and K. Okamura, J. Jpn Inst. Met. 54 (1990) 802.

    Article  CAS  Google Scholar 

  11. T. Shimoo, H. Chen and K. Okamura, J. Ceram. Soc. Jpn 100 (1992) 48.

    Article  CAS  Google Scholar 

  12. P. Rocabois, C. Chatillon and C. Bernard, in Proceedings of Conference on High Temperature Ceramic Matrix Composites-ECCM6, Bordeaux, September 1993, edited by R. Naslain, J. Lamon and D. Doumeingts, (Woodhead Publ., Cambridge, 1993) p. 20.

    Google Scholar 

  13. A. Yamaguchi, Taikabutsu Overseas 4(3) (1984) 14.

    CAS  Google Scholar 

  14. E. A. Gulbransen and S. A. Jansson, Oxid. Met. 4(3) (1972) 181

    Article  CAS  Google Scholar 

  15. S. C. Singhal, Ceramurgia Int. 2(3) (1976) 123.

    Article  CAS  Google Scholar 

  16. K. L. Luthra, J. Amer. Ceram. Soc. 69 (1986) C-231.

    Article  Google Scholar 

  17. P. Greil, J. Eur. Ceram. Soc. 6 (1990) 53.

    Article  CAS  Google Scholar 

  18. P. M. Benson, K. E. Spear and C. G. Pantano, in “Ceramic Microstructures '86”, edited by Pask and Evans (Plenum, 1988) pp. 415–425.

  19. N. S. Jacobson, K. N. Lee and D. S. Fox, J. Amer. Ceram. Soc. 75 (1992) 1603.

    Article  CAS  Google Scholar 

  20. Scientific Group Thermodata Europe, available on line from Thermodata, BP66 F-38402 Saint Martin d'Hères, France and Royal Institute of Technology, S-10044 Stockholm, Sweden.

  21. I. Barin (ed.), in “Thermochemical Data of Pure Substances” (VCH, Weinheim, Germany, 1989) pp. 212, 213, 262, 1092, 1094, 1335–1337, 1358.

    Google Scholar 

  22. L. V. Gurvich, I. V. Veyts and C. B. Alcock, in “Thermodynamic Properties of Individual Substances”, 4th Edn, Vols 1 and 2, edited by L. V. Gurvich, I. V. Veyts and C. B. Alcock (Hemisphere, New York, 1990) pp. 233, 262, 263, 265–267.

    Google Scholar 

  23. A. T. Dinsdale, in “SGTE Data for Pure Elements”, NPL report DMA(A) 195 (National Physical Laboratory, Teddington, 1989).

    Google Scholar 

  24. H. Zhang and C. G. Pantano, J. Amer. Ceram. Soc. 74 (1990) 958.

    Article  Google Scholar 

  25. J. Lipowitz, H. A. Freeman, R. T. Chen and E. R. Prack, Adv. Ceram. Mater. 2 (1987) 121.

    Article  CAS  Google Scholar 

  26. R. Pamppouch, W. S. Ptak, S. Jonas and J. Stoch, in Proceedings of the 9th International Symposium on Reactivity of Solids, edited by K. Direk, J. Habber and J. Novotng (1980) pp. 674–684.

  27. B. O. Yavuz and L. L. Hench, Ceram. Eng. Sci. Proc. 3 (1982) 596.

    Article  CAS  Google Scholar 

  28. R. Berjoan, J. Rodriguez and F. Sibieude, Surf. Sci 271 (1992) 237.

    Article  CAS  Google Scholar 

  29. A. Julbe, A. Larbot, C. Guizard and L. Cot, Eur. J. Solid State Inorg. Chem. 26 (1989) 101.

    CAS  Google Scholar 

  30. P. Rocabois, C. Chatillon and C. Bernard, Surf. Coatings Technol. 61 (1993) 86.

    Article  CAS  Google Scholar 

  31. A. Oberlin, in “Chemistry and Physics of Carbon”, edited by P. A. Thrower (Dekker, New York, 1989) p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vahlas, C., Rocabois, P. & Bernard, C. Thermal degradation mechanisms of Nicalon fibre:a thermodynamic simulation. JOURNAL OF MATERIALS SCIENCE 29, 5839–5846 (1994). https://doi.org/10.1007/BF00366865

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00366865

Keywords

Navigation