Skip to main content
Log in

Thermal kinetics study and flammability evaluation of polyimide fiber material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal stability and flammability of polyimide (PI) fiber for fire protection applications have been assessed by dynamic thermogravimetry and microscale combustion calorimetry (MCC) measurements, respectively. The polymer decomposed in a single step and main pyrolysis occurs within a very narrow temperature range. The kinetic analysis of the main pyrolysis process was conducted by a composite procedure involving the iso-conversional method and the Master-plots method. The main process reaction mechanism of the polyimide obeyed random nucleation model with three nuclei on the individual particle. Compared with polysulfonamide fiber and Meta-aramid (NOMEX 1313) inherently heat-resistant fiber, flammability evaluation from LOI values and MCC data indicated that PI fiber exhibited lower flammability in terms of the ability to ignite and higher flammability in terms of the heat release capacity during combustion. This analysis for kinetics of the PI fiber is useful information for further study of numerical simulation of pyrolysis process of PI fabric when exposed to intense heat flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang QN, Bai YY, Xie JF. Synthesis and filtration properties of polyimide nanofiber membrane/carbon woven fabric sandwiched hot gas filters for removal of PM2.5 particles. Powder Technol. 2016;292:54–63.

    Article  CAS  Google Scholar 

  2. Morgan AB, Putthanarat S. Use of inorganic materials to enhance thermal stability and flammability behavior of a polyimide. Polym Degrad Stab. 2011;96:23–32.

    Article  CAS  Google Scholar 

  3. Cai GM, et al. Experimental investigation on the thermal protective performance of nonwoven fabrics made of high-performance fibers. J Therm Anal Calorim. 2015;121:627–32.

    Article  CAS  Google Scholar 

  4. Udayraj, Talukdar P, Das A, Alagirusamy R. Estimation of radiative properties of thermal protective clothing. Applied Thermal Engineering. 2016; 100:788–797.

  5. Meng XL, Huang YD, Yu H, Lv ZS. Thermal degradation kinetics of polyimide containing 2,6-benzobisoxazole units. Polym Degrad Stab. 2007;92:962–7.

    Article  CAS  Google Scholar 

  6. Li LQ, et al. Thermal stabilities and thermal degradation kinetics of polyimide. Polym Degrad Stab. 2004;84:369–71.

    Article  CAS  Google Scholar 

  7. Lua AC, Su J. Isothermal and non-isothermal pyrolysis kinetics of Kapton® polyimide. Polym Degrad Stab. 2004;91:144–53.

    Article  Google Scholar 

  8. Regnier N, Guibe C. Methodology for multistage degradation of polyimide polymer. Polym Degrad Stab. 1997;55:165–72.

    Article  CAS  Google Scholar 

  9. Hatori H, et al. The mechanism of polyimide pyrolysis in the early stage. Carbon. 1996;34:201–8.

    Article  CAS  Google Scholar 

  10. Polyimide short fiber, http://www.hipolyking.com/fiber.asp?id=3&tid=1. (date of access: 8/3/2016).

  11. Sun F, et al. Study on the thermal stability of polyimide fiber YILUN. Synth Fiber China. 2012;41:6–9.

    CAS  Google Scholar 

  12. Yang JJ, et al. The properties and application YILUN polyimide short fiber. Hi Tech Fiber Appl. 2012;37:57–60.

    Google Scholar 

  13. Vyazovkin S, Wight CA. Kinetics in solids. Annu Rev Phys Chem. 1997;48:125–49.

    Article  CAS  Google Scholar 

  14. Kissinger H. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  15. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881e6.

    Article  Google Scholar 

  16. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  17. Doyle CD. Series approximation to the equation of thermogravimetric data. Nature. 1965;207:290–1.

    Article  CAS  Google Scholar 

  18. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  19. Criado JM, Malek J, Orgega A. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta. 1989;147:377–85.

    Article  CAS  Google Scholar 

  20. Vyazovkin SV, Lesnikovich AI. An approach to the solution of the inverse kinetic problem in the case of complex processes: part 1. Methods employing a series of thermoanalytical curves. Thermochim Acta. 1990;165:272–80.

    Google Scholar 

  21. Yang CQ, He QL, Lyon RE, Hu Y. Investigation of the flammability of different textile fabrics using micro-scale combustion calorimetry. Polym Degrad Stab. 2010;95:108–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (51576215, U130543) and the National Key Research and Development Program of China (2017YFB0309000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanglong Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, F., Xu, Y., Feng, Q. et al. Thermal kinetics study and flammability evaluation of polyimide fiber material. J Therm Anal Calorim 131, 2579–2587 (2018). https://doi.org/10.1007/s10973-017-6752-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6752-z

Keywords

Navigation