Skip to main content
Log in

Finite element crack growth algorithm for dynamic fracture

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A new finite element crack growth algorithm has been developed to simulate dynamic fracture. In this algorithm, pseudo elements with very high initial density are placed below the crack plane and the density is reduced to zero in a gradual manner as the crack passes the element. A number of linear elastic and elasto-viscoplastic problems have been carried out to test the new algorithm. The results are compared with some of the existing crack growth models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aberson, J. F.; Anderson, J. M.; King, W. W. (1977): Dynamic analysis of cracked structures using singularity finite elements. In: Sih, G. C. (ed.): Elastodynamic crack problems. Hyden: Noordhoff. 249–294

    Google Scholar 

  • Aoki, S.; Kishimoto, K.; Kondo, H.; Sakata, M. (1978): Elastodynamic analysis of crack by finite element method using singular elements. Int. J. Fract. 14, 59–68

    Google Scholar 

  • Bazant, Z.; Glazik, J. L.; Achenbach, J. D. (1978): Elasto dynamic fields near running cracks by finite elements. Comput. Struct. 8, 193–198

    Google Scholar 

  • Brickstad, B.; Nilsson, F. (1980): Numerical evaluation by FEM of crack propagation experiments. Int. J. Fract. 16, 71–84

    Google Scholar 

  • Brickstad, B. (1983a): A FEM analysis of crack arrest experiments. Int. J. Fract. 21, 177–194

    Google Scholar 

  • Brickstad, B. (1983b): A viscoplastic analysis of rapid crack propagation experiments in steel. J. Mech. Phys. Solids 31, 307–327

    Google Scholar 

  • Cook, R. D.; Malkus, D. S.; Pleasha, M. E. (1989): Concepts and applications of finite elements. New York: Wiley

    Google Scholar 

  • Dhalberg, L., Nilsson, F.; Brickstad, B. (1980): Influence of specimen geometry on crack propagation and arrest toughness. In: Hahn, G. T.; Kanninen, M. F. (eds.): Crack arrest methodology and applications. ASTM STP 711, 89–108

  • Freund, L. B.; Hutchison, J. W. (1985): High strain rate crack growth in rate dependant solids. J. Mech. Phys. Solids 33, 169–191

    Google Scholar 

  • Freund, L. B. (1990): Dynamic fracture mechanics. Cambridge: University press

    Google Scholar 

  • Hsu, T. R.; Bertels, A. W. M. (1976): Propagation and opening of a through crack in a pipe subjected to combined cyclic thermo-mechanical loading. J. Press Vessel Tech., Trans. ASME, 98, 17–25

    Google Scholar 

  • Hsu, T. R.; Zhai, Z. H. (1984): A finite element algorithm for creep crack growth. Eng. Fract. Meh. 20, 521–533

    Google Scholar 

  • Jung, J.; Kanninen, M. F. (1983): An analysis of dynamic crack propagation and arrest in a nuclear pressure vessel under thermal shock conditions. J. Press Vessel Tech., Trans. ASME, 105, 111–116

    Google Scholar 

  • Keegstra, P. N. R. (1976): A transient finite element crack propagation model for nuclear pressure vessel steels. J. Inst. Nucl. Engrs. 17, 89–96

    Google Scholar 

  • Kim, Y. J.; Hsu, T. R. (1982): A numerical analysis of stable crack growth under increasing load. Int. J. Fract. 20, 17–32

    Google Scholar 

  • Kobayashi, A. S.; Emery, A. F.; Mall, S. (1976): Dynamic finite element and dynamic photo elastic analysis of two fracturing homolite-100 plates. Expt. Mech. 16, 231–238

    Google Scholar 

  • Krishn Kumar, R.; Narasimhan, R.; Prabhakar, O. (1989): Energy flow to the crack tip in a viscoplastic material. In: Erki, M. A.; Kirkhope (eds.): J. Proc. 12th Canadian Congress of Applied Mechanics, Ottawa, Canada, 496–497

  • Krishna Kumar, R. (1990): Finite element analysis of transient and steady state dynamic crack propagation. Ph.D. thesis, IIT, Madras

  • Krishna Kumar, R.; Narasimhan, R.; Prabhakar, O. (1992): Dynamic growth of tensile cracks by ductile and brittle fracture mechanisms in a viscoplastic material. Acta Metallurgica (To appear)

  • Malluk, J. F.; King, W. W. (1978): Fast fracture simulated by finite element analysis which accounts for crack tip energy dissipation. In: Luxmoore, A. R.; Owen, D. R. J. (eds.): Swansea, U.K. Univ. College, 648–659

  • Mataga, P. A.; Freund, L. B.; Hutchinson, J. W. (1987): Crack tip plasticity in dynamic fracture. J. Phys. Chem. Solids 48, 985–1000

    Google Scholar 

  • Malluk, J. F.; King, W. W. (1980): Fast fracture simulated by conventional finite elements: A comparison of two energy release algorithms. In: Hahn, G. T.; Kanninen, M. F. (eds.): Crack arrest methodology and applications. ASTM STP 711, 38–53

  • Nishioka, T.; Atluri, S. N. (1982): Finite element simulation of fast fracture in steel DCB specimen. Eng. Fract. Mech. 16, 157–175

    Google Scholar 

  • Nishioka, T.; Atluri, S. N. (1986): Computational methods in dynamic fracture. In: Atluri, S. N. (ed.): Computational methods in mechanics of fracture. Amsterdam: North-Holland, 3345–384

    Google Scholar 

  • Nishioka, T.; Stonesifer, R. B.; Alturi, S. N. (1980): Moving singularity finite element modelling of fast fracture in finite bodies: Generation and propagation studies. In: Owen, D. R. J.; Luxmoore, A. R. (eds.): Numerical Methods in Fracture Mechanics, Pineride Press, U.K., 59–68

    Google Scholar 

  • Patterson, C.; Oldale, M. C. (1981): An analysis of fast fracture and arrest in DCB specimens using crack tip elements. In: Advances in Fracture Research. ICF, V, 5, 2225–2232

  • Rose, L. R. F. (1976): On the initial motion of a Griffith crack. Int. J. Fract. 12, 829–841

    Google Scholar 

  • Rydholm, G.; Fredriksson, B.; Nilsson, F. (1978): Numerical investigations of rapid crack propagation. In: Luxmoore, A. R.; Owen, D. R. J. (eds.): Numer. Meth. Fract. Mech. Swansea, U.K., 660–672

  • Shiue, T. J.; Ravichandar, K. (1989): Numerical simulation of transient crack growth experiments. In: Salama, J.; Ravichandar, K.; Japlin, D. M. R.; Rama Rao, P. (eds.): Advances in Fracture Research. ICF VII, 1, 745–752

  • Yoshimura, S.; Yagawa, F.; Atluri, S. N. (1989): Generation and propagation analysis of high strain rate dynamic crack propagation in a viscoplastic solid. Nuclear Eng. Design 111, 273–289

    Google Scholar 

  • Zhang, J. Y.; Hsu, T. R.; Wang, I. Q. (1990): Numerical modelling of crack propagation using multi variable breakable finite elements. Commn. Appl. Num. Methods 6, 215–222 breakable finite

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, February 22, 1993

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kannan, K.S., Kumar, R.K. & Prabhakar, O. Finite element crack growth algorithm for dynamic fracture. Computational Mechanics 12, 349–359 (1993). https://doi.org/10.1007/BF00364243

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00364243

Keywords

Navigation