Skip to main content
Log in

Toughening mechanisms for a zirconia-lithium aluminosilicate glass-ceramic

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanical properties of a lithium aluminosilicate glass-ceramic and the same glass-ceramic containing 5 and 15 wt% zirconia were investigated. The aim of the study was to assess the contributions to toughening from various toughening mechanisms. For the zirconia-containing compositions, zirconia initially precipitated, upon heat treatment of the glass, as tetragonal zirconia (t-ZrO2), and upon further heat treatment, transformed to monoclinic zirconia (m-ZrO2). This transformation could also be induced by grinding samples containing t-ZrO2. By heat treating, the fracture toughness of all compositions increased with increasing matrix grain size until the matrix grain size exceeded ∼ 1 μm, whereupon both the fracture toughness and strength decreased sharply. The matrix phases, lithium metasilicate and β-eucryptite, have either high thermal expansion mismatch or high thermal expansion anisotropy resulting in large thermal stresses. The initial toughness increases observed in each composition were attributed to the formation of a microcrack zone around the propagating crack. At larger grain sizes, thermal stresses caused spontaneous cracking and loss of strength. Zirconia additions also contributed to the fracture toughness improvement; however, the predominant toughening mechanism was not by transformation but due to crack deflection by the stress fields around the transformed, i.e. m-ZrO2, particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.R. Karsetter and R.O. Voss, J. Am. Ceram. Soc. 50 (3) (1967) 133.

    Google Scholar 

  2. G.H. Beall, B.R. Karsetter and H.L. Ritter, ibid. 50 (4) (1967) 181.

    CAS  Google Scholar 

  3. D.A. Duke, J.F. Mac Dowell and B.R. Karsetter, ibid. 50 (2) (1967) 67.

    CAS  Google Scholar 

  4. J. Aveston, in “The properties of Fibre composites” (IPC Science and Technology Press, London, 1972).

    Google Scholar 

  5. R.A.J. Sambell, D.H. Bowen and D.C. Phillips, J. Mater. Sci. 7 (6) (1972) 663.

    CAS  Google Scholar 

  6. Idem., ibid. 7 (6) (1972) 676.

    CAS  Google Scholar 

  7. T.B. Troczynski and P.S. Nichloson, J. Am. Ceram. Soc. 74 (8) (1991) 1803.

    Article  CAS  Google Scholar 

  8. D.R. Cearke and B. Schwartz, J. Mater. Res. 2 (6) (1987) 801.

    Google Scholar 

  9. M.A. McCoy and A.H. Heuer, J. Am. Ceram. Soc. 71 (8) (1988) 673.

    Article  CAS  Google Scholar 

  10. C.A. Sorrell and C.C. Sorrell, ibid. 60 (11–12) (1977) 495.

    CAS  Google Scholar 

  11. G. Fagherazzi, S. Enzo, V. Gottardi and G. Scarinci, J. Mater. Sci. 15 (11) (1980) 2693.

    Article  CAS  Google Scholar 

  12. B.H. Mussler, and M.W. Shafer, Am. Ceram. Soc. Bull. 64 (11) (1985) 1459.

    CAS  Google Scholar 

  13. M. Nogami and M. Tomozawa, J. Am. Ceram. Soc. 69 (2) (1986) 99.

    Article  CAS  Google Scholar 

  14. K.D. Keefer and T.A. Michalske, ibid. 70 (4) (1987) 227.

    Article  CAS  Google Scholar 

  15. G. Leatherman and M. Tomozawa, J. Mater. Sci. 25 (1990) 4488.

    Article  CAS  Google Scholar 

  16. M. Nogami, K. Nagasaka, K. Kadono and T. Kishimoto, J. Non-Cryst. Solids 100 (1988) 298.

    Article  CAS  Google Scholar 

  17. Y. Cheng, Br. Ceram. Trans. J. 87 (3) (1988) 107.

    CAS  Google Scholar 

  18. Idem. J. Mater. Sci. Lett. 9 (1) (1990) 24.

    Article  CAS  Google Scholar 

  19. S. Sridharan and M. Tomozawa, J. Non-Cryst. Solids 182 (1995) 262.

    Article  Google Scholar 

  20. C.T. Reed, M.J. Haun, T.K. Brog, K.R. McNerney, J.D. Sibald and D.G. Wirth, in Proceedings of the Ceramic Matrix Composites Symposium of the 1993 American Ceramic Society Annual Meeting, to be published.

  21. A.H. Heuer and L.W. Hobbs (eds), “Advances in Ceramics”, Vol. 3 (American Ceramic Society, Columbus, Ohio, 1981).

    Google Scholar 

  22. N. Claussen, M. Ruhle and A.M. Heuer (eds), “Advances in Ceramics”, Vol. 12 (American Ceramic Society, Columbus, Ohio, 1984).

    Google Scholar 

  23. S. Somiya, N. Yamamoto and H. Yanagida (eds), “Advances in Ceramics”, Vol. 24 (American Ceramic Society, Westerville, Ohio, 1988).

    Google Scholar 

  24. E.H. Lutz and N. Claussen, J. Am. Ceram. Soc. 74 (1) (1991) 11.

    CAS  Google Scholar 

  25. D.J. Green, R.H.J. Hannink and M. V. Swain, “Transformation Toughening of Ceramics” (CRC Press, Inc., Boca Raton, FL, 1989).

    Google Scholar 

  26. P.W. McMillian and G. Partridge, British Patent 924 996 (1963).

    Google Scholar 

  27. E.B. Watson, Contrib. Mineral. Petreol. 70 (1979) 407.

    CAS  Google Scholar 

  28. A. Marotta, A. Buri and F. Branda, J. Mater. Sci. 16 (2) (1981) 341.

    Article  CAS  Google Scholar 

  29. S.M. Ohlberg and D.W. Strickler, J. Amer. Soc. 45 (4) (1962) 170.

    CAS  Google Scholar 

  30. H. Toraya, M. Yoshimura and S. Somiya, J. Am. Ceram. Soc. 67 (6) (1984) C119.

    CAS  Google Scholar 

  31. T. Nose and T. Fujii, ibid. 71 (5) (1988) 328.

    Article  CAS  Google Scholar 

  32. D. Broek, “Elementary Fracture Mechanics” (Martinus Nijhoff, Boston, 1987) p. 181.

    Google Scholar 

  33. C.B. Ponton and R.D. Rawlings, Mater. Sci. and Technol. 5 (9) (1989) 865.

    Google Scholar 

  34. Idem. ibid. 5 (10) (1989) 961.

    CAS  Google Scholar 

  35. M.-O. Guillou, J.L. Henshall, R.M. Hooper and G.M. Carter, J. Hard Mat. 3 (3–4) (1992) 421.

    CAS  Google Scholar 

  36. F.P. Beer and E.R. Johnston Jr, “Mechanics of Materials” (McGraw-Hill, Inc., New York, 1981) p. 589.

    Google Scholar 

  37. G.F. Vander Voort, “Metallography — Principles and Practices”, (McGraw-Hill Book Co., New York, 1984) p. 423.

    Google Scholar 

  38. R.M. McMeeking and A.G. Evans, J. Amer. Ceram. Soc. 65 (5) (1982) 242.

    Google Scholar 

  39. B. Budiansky, J.W. Hutchenson and J.C. Lambropoulos, Int. J. Solids Struct. 19 (4) (1983) 337.

    Google Scholar 

  40. P.F. Becher, M.V. Swain and M.K. Ferber, J. Mater. Sci. 22 (1) (1987) 76.

    Article  CAS  Google Scholar 

  41. P.F. Becher and M.V. Swain, J. Am. Ceram. Soc. 75 (3) (1992) 493.

    Article  CAS  Google Scholar 

  42. P.F. Becher, K.B. Alexander, A. Bleier, S.B. Waters and W.H. Warwick, ibid. 76 (3) (1993) 657.

    Article  CAS  Google Scholar 

  43. R.W. Rice and S.W. Freiman, ibid. 64 (6) (1981) 350.

    CAS  Google Scholar 

  44. K.T. Faber and A.G. Evans, Acta Metall. 31 (4) (1983) 565.

    Google Scholar 

  45. G. Leatherman, PhD Thesis, R.P.I., Troy, New York (1986).

    Google Scholar 

  46. H. Ruf and A.G. Evans, J. Am. Ceram. Soc. 66 (5) (1983) 328.

    CAS  Google Scholar 

  47. N. Claussen, ibid. 59 (1–2) (1976) 49.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarno, R.D., Tomozawa, M. Toughening mechanisms for a zirconia-lithium aluminosilicate glass-ceramic. JOURNAL OF MATERIALS SCIENCE 30, 4380–4388 (1995). https://doi.org/10.1007/BF00361521

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00361521

Keywords

Navigation