Skip to main content
Log in

A model for size- and rotation-invariant pattern processing in the visual system

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The mapping of retinal space onto the striate cortex of some mammals can be approximated by a log-polar function. It has been proposed that this mapping is of functional importance for scale-and rotation-invariant pattern recognition in the visual system. An exact log-polar transform converts centered scaling and rotation into translations. A subsequent translation-invariant transform, such as the absolute value of the Fourier transform, thus generates overall size-and rotation-invariance. In our model, the translation-invariance is realized via the R-transform. This transform can be executed by simple neural networks, and it does not require the complex computations of the Fourier transform, used in Mellin-transform size-invariance models. The logarithmic space distortion and differentiation in the first processing stage of the model is realized via “Mexican hat” filters whose diameter increases linearly with eccentricity, similar to the characteristics of the receptive fields of retinal ganglion cells. Except for some special cases, the model can explain object recognition independent of size, orientation and position. Some general problems of Mellin-type size-invariance models-that also apply to our model-are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allman, J.H., Kaas, J.H.: Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). Brain Res. 35, 89–106 (1971)

    Google Scholar 

  • Altes, R.A.: The Fourier-Mellin transform and mammalian hearing. J. Acoust. Soc. Am. 63, 174–183 (1978)

    Google Scholar 

  • Altmann, J., Reitboeck, H.J.: A last correlation method for scale and translation-invariant pattern recognition. IEEE Trans. PAMI 6, 46–57 (1984)

    Google Scholar 

  • Altmann, J.: Fast digital rotation-, scale-, and translationinvariant pattern recognition using second moments (submitted for publication)

  • Blakemore, C.B., Campbell, F.W.: On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J. Physiol. 203, 237–260 (1969)

    Google Scholar 

  • Braccini, C., Gambardella, G., Sandini, G., Tagliasco, V.: A model of the early stages of the human visual system: functional and topological transformations performed in the peripheral visual field. Biol. Cybern. 44, 47–58 (1982)

    Google Scholar 

  • Brousil, J.K., Smith, D.R.: A threshold logic network for shape invariance. IEEE Trans. EC 16, 818–828 (1967)

    Google Scholar 

  • Bundesen, C., Larsen, A.: Visual transformation of size. J. Exp. Psychol. Hum. Perc. Performance 1, 214–220 (1975)

    Google Scholar 

  • Burkhardt, H., Müller, X.: On invariant sets of a certain class of fast translation-invariant transforms. IEEE Trans. ASSP 28, 517–523 (1980)

    Google Scholar 

  • Campbell, F.W., Cleland, B.G., Cooper, G.F., Enroth-Cugell, C.: The angular selectivity of visual cortical cells to moving gratings. J. Physiol. 198, 237–250 (1968)

    Google Scholar 

  • Campbell, F.W., Nachmias, J., Jukes, J.: Spatial frequency discrimination in human vision. J. Opt. Soc. Am. 60, 555–559 (1970)

    Google Scholar 

  • Casasent, D., Psaltis, D.: Position, rotation, and scale invariant optical correlation. Appl. Optics 15, 1795–1799 (1976)

    Google Scholar 

  • Cavanagh, P.: Size and position invariance in the visual system. Perception 7, 167–177 (1978)

    Google Scholar 

  • Cavanagh, P.: Size invariance: reply to Schwartz. Perception 10, 469–474 (1981)

    Google Scholar 

  • Cavanagh, P.: Functional size invariance is not provided by the cortical magnification factor. Vision Res. 22, 1409–1412 (1982)

    Google Scholar 

  • Cowan, J.D.: Some remarks on channel bandwidths for visual contrast detection. Neurosci. Res. Program Bull. 15, 492–517 (1977)

    Google Scholar 

  • Cowey, A.: Projection of the retina onto striate and prestriate cortex in the squirrel monkey (Saimiri sciureus). J. Neurophysiol. 27, 366–393 (1964)

    Google Scholar 

  • Daniel, P.M., Whitteridge, D.: The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. 159, 203–221 (1961)

    Google Scholar 

  • Dow, B.M., Snyder, A.Z., Vautin, R.G., Bauer, R.: Magnification factor and receptive field size in foveal striate cortex of the monkey. Exp. Brain Res. 44, 213–228 (1981)

    Google Scholar 

  • Epstein, L.I.: An attempt to explain the differences between the upper and lower halves of the striate cortical map of the cat's field of view. Biol. Cybern. 49, 175–177 (1984)

    Google Scholar 

  • Ermentrout, G.B., Cowan, J.D.: A mathematical theory of visual hallucination patterns. Biol. Cybern. 34, 137–150 (1979)

    Google Scholar 

  • Fischer, B.: Overlap of receptive field centers and representation of the visual field in the cat's optic tract. Vision Res. 13, 2113–2120 (1973)

    Google Scholar 

  • Hollard, V.D., Delius, J.D.: Rotational invariance in visual pattern recognition by pigeons and humans. Science 218, 804–806 (1982)

    Google Scholar 

  • Huang, G.C., Russell, F.D., Chen, W.H.: Pattern recognition by Mellin transform. EIA/APr Symp., Univ. Maryland, April 1975

  • Maffei, L., Fiorentini, A.: The visual cortex as a spatial frequency analyser. Vision Res 13, 1255–1267 (1973)

    Google Scholar 

  • Maffei, L., Fiorentini, A.: Spatial frequency rows in the striate visual cortex. Vision Res. 17, 257–264 (1977)

    Google Scholar 

  • Marr, D., Hildreth, E.: Theory of edge detection Proc. R. Soc. London B 207, 187–217 (1980)

    Google Scholar 

  • Müller, X.: Schnelle, translationsinvariante Transformationen zur Bearbeitung digitaler Grauwertbilder, Fortsch.-Ber. VDI-Z. Reihe 10, Nr. 17, 1982

  • Müller, X., Burkhardt, H.: Two-dimensional, fast translation invariant transforms with improved mapping properties. Proc. 6th Intern. Conf. Pattern Recognition, Munich, 427–430, Oct. 19–22, 1982

  • Reiboeck, H.J. Brody, T.P.: A transformation with invariance under cyclic permutation for applications in pattern recognition. Inf. Control. 15, 130–154 (1969)

    Google Scholar 

  • Reitboek, H.J.: An algorithm for the shift-and size-invariant description of patterns, Westinghouse Rep. 78-IFO-FEATR-01, 1978

  • Reitboeck, H.J.: A multi-electrode matrix for studies of temporal signal correlations within neural assemblies In: Basar, E., Flohr, H., Haken, H., Mandell, A.J., eds. Synergetics of the brain. Berlin, Heidelberg, New York, Tokyo: Springer 1983

    Google Scholar 

  • Schwartz, E.L.: Spatial mapping in the primate sensory projection: analytic structure and relevance to perception. Biol. Cybern. 25, 181–194 (1977a)

    Google Scholar 

  • Schwartz, E.L.: Afferent geometry in the primate visual cortex and the generation of neuronal trigger features. Biol. Cybern. 28, 1–14 (1977b)

    Google Scholar 

  • Schwartz, E.L.: A quantitative model of the functional architecture of human striate cortex with application to visual illusion and cortical texture analysis. Biol. Cybern. 37, 63–76 (1980a)

    Google Scholar 

  • Schwartz, E.L.: Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding. Vision Res. 20, 645–669 (1980b)

    Google Scholar 

  • Schwartz, E.L.: Cortical anatomy, size invariance, and spatial frequency analysis. Perception 10, 455–468 (1981)

    Google Scholar 

  • Schwartz, E.L.: Cortical mapping and perceptual invariance: a reply to Cavanagh. Vision Res. 23, 831–835 (1983)

    Google Scholar 

  • Tusa, R.J., Palmer, L.A., Rosenquist, A.C.: The retinotopic organization of area 17 (striate cortex) in the cat. J. Comp. Neurol. 177, 213–236 (1978)

    Google Scholar 

  • Valois, de R.L., Albrecht, D.G., Thorell, L.G.: Spatial frequency selectivity of cells in macaque visual cortex. Vision Res. 22, 545–559 (1982)

    Google Scholar 

  • Wagh, M.D., Kanetkar, S.V.: A multiplexing theorem and generalisation of R-transform. Intern. J. Computer Math. (Sect. A) 5, 163–171 (1975)

    Google Scholar 

  • Wagh, M.D., Kanetkar, S.V.: A class of translation invariant transforms. IEEE Trans. ASSP 25, 203–205 (1977)

    Google Scholar 

  • Weiman, C.F.R., Chaikin, G.: Logarithmic spiral grids for image processing and display. Comput. Graph. Im. Proc. 11, 197–226 (1979)

    Google Scholar 

  • West, G., Reitboeck, H.J.: Zur ähnlichkeitsinvarianten Mustererkennung mittels der Fourier-Mellin-Transformation. Elektron. Informationsverarbeitung Kybernetik 15, 507–512 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reitboeck, H.J., Altmann, J. A model for size- and rotation-invariant pattern processing in the visual system. Biol. Cybern. 51, 113–121 (1984). https://doi.org/10.1007/BF00357924

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00357924

Keywords

Navigation