Skip to main content
Log in

Mathematical and experimental investigation of the self-propagating high-temperature synthesis (SHS) of TiAl3 and Ni3Al intermetallic compounds

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

One-dimensional mathematical modeling was used to describe the self-propagating high-temperature synthesis (SHS) process for preparing TiAl3 and Ni3Al intermetallics. The kinetic parameters (activation energies and pre-exponential factors) for the two compounds were obtained by matching experimental measurement and the numerical solution. The results thus obtained were compared with rate parameters obtained using different methods. The activation energy was 483 and 283 kJ mol−1 for the formation of TiAl3 and Ni3Al, respectively. The temperature profiles calculated using the mathematical model were compared with experimental measurements for both aluminides which indicated reasonable agreement. Fine particle size and moderate preheating increase the SHS rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Thermal diffusivity, m2 s−1

c :

Heat capacity, J K−1 mol−1

E :

Activation energy, J mol−1

ΔH:

Enthalpy, J mol−1

I :

\(\int_0^1 \varphi {\text{ d}}t + \int_0^1 {(1 - t} ) \varphi {\text{d}}t\), defined in Equation 29

k :

Rate constant, s−1

k 0 :

Pre-exponential factor, s−1

m :

Atomic fraction

n :

Reaction order

p :

Function defined by Equation 17

R :

Gas constant, 8.314 J mol−1K−1

T :

Temperature, K

t :

Time, s

u :

Burning rate, ms−1

x :

Distance, m

α :

Conversion fraction

λ :

Thermal conductivity, Wm−1 K−1

ϱ:

Density, g cm−3

σ:

Constant in Equation 36

τ:

Dimensionless temperature defined by Equation 12

ϕ:

(−ΔH)ϱφ/TadT 0 defined in Equation 13

Φ:

function defined in Equation 2

ω:

ϱuc

0:

Initial state or total

1:

Substance 1

2:

Substance 2

a:

Substance a

avg:

Average

ad:

Adiabatic state

b:

Substance b

f:

Formation

ig:

Ignition state

m:

Mean

max:

Maximum

s:

Sample

References

  1. Z.Munir, Ceram. Bull. 67 (1988) 342.

    CAS  Google Scholar 

  2. A. G.Merzhanov and I. P.Borovinskaya, Combustion Science and Technology 10 (1975) 195.

    Article  CAS  Google Scholar 

  3. W. I.Frankhouser, K. W.Brendley, M. C.Kieszek, and S. T.Sullivan, Gasless Combustion Synthesis of Refractory Compounds, Noyes Publications, Park Ridge, New Jersey (1985) pp 5–60, 106–117.

    Google Scholar 

  4. V.Hlavacek, Ceram. Bull 70 (1991) 240.

    CAS  Google Scholar 

  5. A. G.Merzhanov and I. P.Borovinskaya, Doklady of the Academy of Sciences of the U.S.S.R. Earth Sciences Sections 204 (1972) 366.

    CAS  Google Scholar 

  6. A. I.Taub and R. L.Fleischer, Science 243 (1989) 616.

    Article  CAS  Google Scholar 

  7. V. K.Sikka, Symposium Proceedings, High Temperature Aluminides and Intermetallics, October 1–5, 1989, Indianapolis, Indiana, edited by S. H.Whang, C. T.Liu, D. P.Pope, and J. D.Stiegler, The Minerals, Metals and Materials Society, Warrendale, Pennsylvania (1990) pp. 505–519.

    Google Scholar 

  8. D. E.Alman and N. S.Stoloff, Int. J. Powd. Met. 27 (1991) 29.

    CAS  Google Scholar 

  9. J. M.Larsen, K. A.Williams, S. J.Balsone, and M. A.Stuck, Symposium Proceedings, High Temperature Aluminides and Intermetallics, October 1–5, 1989, Indianapolis, Indiana, edited by S. H.Whang, C. T.Liu, D. P.Pope, and J. D.Stiegler, The Minerals, Metals and Materials Society, Warrendale, Pennsylvania (1990) pp. 521–536.

    Google Scholar 

  10. C. T.Liu, C. L.White and J. A.Horton, Acta Metall. 33 (1985) 213.

    Article  CAS  Google Scholar 

  11. W. A.Kaysser, R.Lang, J. C.Murray and G. E.Petzow, Int. J. Powd. Metall. 27 (1991) 43.

    CAS  Google Scholar 

  12. H. Y.Sohn and X.Wang, Materials and Manufacturing Processes 9 (1994) 75.

    Article  CAS  Google Scholar 

  13. X.Wang, H. Y.Sohn and M. E.Schlesinger, Materials Sci. Eng. A, A186 (1994) 151

    Article  CAS  Google Scholar 

  14. G. E.Myers, Analytical Methods in Conduction Heat Transfer, 2nd edn., McGraw-Hill, New York (1987) pp. 100–130.

    Google Scholar 

  15. R. B.Bird, W. E.Stewart, and E. N.Lightfoot, Transport Phenomena, Wiley, New York (1960) pp. 265–341.

    Google Scholar 

  16. A. A.Zenin, A. G.Merzhanov and G. A.Nersisyan, Physics of Combustion and Explosions 17 (1981) 79.

    Article  CAS  Google Scholar 

  17. M. G. Roth, Ph.D. thesis, Department of Computer Science, University of Illinois at Urbana-Champaign (1984).

  18. A. G.Merzhanov, Combustion and Flame 16 (1971) 89.

    Article  CAS  Google Scholar 

  19. Y. B.Zeldovich, G. I.Barenblatt, V. B.Librovich, and G. M.Makhviladze, The Mathematical Theory of Combustion and Explosions, 1st ed., Consultant Bureau, A Division of Plenum Publishing Corporation, New York (1985) pp. 100–120, 305–341.

    Book  Google Scholar 

  20. Y. A.Zeldovich, J. Phys. Chem. (Zh. Fiz. Khim) 4 (1930) 22.

    Google Scholar 

  21. A. G.Merzhanov, Combustion and Flame 13 (1969) 143.

    Article  CAS  Google Scholar 

  22. A. M.Kanuary, Introduction to Combustion Phenomena, Gordon and Breach Science Publishers, New York, (1975) pp. 297–299.

    Google Scholar 

  23. X.Wang, Ph.D. Dissertation, University of Utah, Salt Lake City, Utah (1993).

    Google Scholar 

  24. R.Hultgren, Selected Values of the Thermodynamic Properties of the Binary Alloys, American Society for Metals, Metals Park, Ohio (1973) pp. 98–200.

    Google Scholar 

  25. R. A.Robic, B. S.Hemingway, and J. R.Fisher, U.S. Geological Survey Bulletin 1452, United States Government Printing Office, Washington, DC, 1978, pp. 2–85.

    Google Scholar 

  26. J.Szekely, J. W.Evans and H. Y.Sohn, Gas-Solid Reactions, Academic Press, New York (1976) pp. 206–246.

    Google Scholar 

  27. H. W.Godbee and W. T.Ziegler, J. Appl. Phys. 37 (1966) 40–55, 56–61.

    Article  CAS  Google Scholar 

  28. A. V.Luikov, A. G.Shashkov, O. L.Vasiliev and Y. E.Fraiman, Int. J. Heat Mass Transfer 11 (1966) 117.

    Article  Google Scholar 

  29. C. Y.Ho, R. W.Powell and P. E.Liley, J. Phys. Chem. Ref. Data 1 (1972) 279.

    Article  CAS  Google Scholar 

  30. J. M. Syuve and M. J. Ferrante, “Low-Temperature Heat Capacity and High Temperature Enthalpy of TiAl3”, Report of Investigation 7834, United States Department of Interior, Bureau of Mines (1974) pp. 1–9.

  31. W. W.Liang, Computer Coupling of Phase Diagrams and Thermochemistry, 7 (1983) 13.

    Article  CAS  Google Scholar 

  32. V. I.Bogdanov, A. V.Ruban and D. L.Fuks, Russ. J. Phys. 60 (1986) 1013.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohn, H.Y., Wang, X. Mathematical and experimental investigation of the self-propagating high-temperature synthesis (SHS) of TiAl3 and Ni3Al intermetallic compounds. JOURNAL OF MATERIALS SCIENCE 31, 3281–3288 (1996). https://doi.org/10.1007/BF00354680

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00354680

Keywords

Navigation