Skip to main content
Log in

Influence of Conditions of Self-Propagating High-Temperature Synthesis on Phase Composition and Structure of Materials Based on Ti–B

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The results of studying the effect of shear deformation and the medium on the phase composition and structure of materials based on Ti–B obtained under the conditions of self-propagating high-temperature synthesis (SHS) are presented. The object of the study was titanium and boron powders in the ratio of 87 wt % Ti and 13 wt % B, which were taken from the calculation to form 70 wt % TiB and 30 wt % Ti during their direct synthesis in the SHS mode. These materials have been synthesized under four conditions: SHS without deformation (i) in air and (ii) helium, (iii) free SHS compression, and (iv) SHS extrusion. It is shown that shear deformation contributes to a more complete course of phase formation processes and uniform distribution of titanium monoboride in the matrix from the Ti[B]x solid solution due to the involvement of the entire volume of the synthesized material in the synthesis process and more uniform heat removal. For each material obtained by these methods, the microstructure has been studied, the quantitative phase composition has been determined, and the crystal lattice parameters of the main TiB phase have been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. L. Shufeng and K. Katsuyoshi, et al., Mater. Des. 95, 127 (2016). https://doi.org/10.1016/j.matdes.2016.01.092

    Article  CAS  Google Scholar 

  2. A. S. Namini, M. Azadbeh, and M. S. Asl, Sci. Iran 25, 762 (2018). https://doi.org/10.24200/sci.2017.4499

    Article  Google Scholar 

  3. M. S. Asl, A. S. Namini, A. Motallebzadeh, et al., Mater. Chem. Phys. 203, 266 (2018). https://doi.org/10.1016/j.matchemphys.2017.09.069

    Article  CAS  Google Scholar 

  4. Y. K. Cao, F. P. Zeng, J. Z. Lu, et al., Mater. Trans. 56, 259 (2017). https://doi.org/10.2320/matertrans.M2014347

    Article  CAS  Google Scholar 

  5. H. Izui, A. Oota, K. Matsuura, et al., Mech. Eng. J. 3, 15-00571 (2016). https://doi.org/10.1299/mej.15-00571

    Article  CAS  Google Scholar 

  6. N. Kang, P. Coddet, Q. Liu, H. L. Liao, et al., Addit. Manuf. 11, 1 (2016). https://doi.org/10.1016/j.addma.2016.04.001

    Article  CAS  Google Scholar 

  7. K. Shoichi, T. Shunsuke, and K. Takao, Materials 12, 36 (2019). https://doi.org/10.3390/ma12223685

    Article  CAS  Google Scholar 

  8. X. Zhang, Q. Xu, J. Han, and V. L. Kvanin, Mater Sci. Eng. 348, 41 (2003). https://doi.org/10.1016/S0921-5093(02)00635-4

    Article  CAS  Google Scholar 

  9. L. Liu, L. Yongbing, J. Lianfeng, et al., R. Met. Mater. Eng. 45, 1157 (2016). https://doi.org/10.1016/s1875-5372(16)30112-6

    Article  CAS  Google Scholar 

  10. P. M. Bazhin, A. M. Stolin, and A. S. Konstantinov, Adv. Mater. Technol. 3, 40 (2017). https://doi.org/10.17277/amt.2017.03.pp.040-043

    Article  Google Scholar 

  11. Yu. V. Makhonina, Sovr. Mater. Tekhn. Tekhnol. 34, 27 (2021). https://doi.org/10.47581/2021/SMTT/34.1.005

    Article  Google Scholar 

  12. G. V. Dzhandieri, D. V. Sakhvadze, G. V. Zakharov, et al., Metallurg. Mashin. 3, 40 (2019).

    Google Scholar 

  13. A. F. Sotnikov and E. I. Latukhin, Studencheskii 104, 6 (2020).

    Google Scholar 

  14. S. M. Gaidar, V. D. Zhigarev, and I. N. Kravchenko, Rem. Vosstanov. Modern. 6, 30 (2016).

    Google Scholar 

  15. Yu. V. Titova, D. A. Maidan, and A. Yu. Illarionov, Novaya Nauka: Strat. Vekt. Razv. 76, 174 (2016).

    Google Scholar 

  16. O. V. Lapshin, E. V. Boldyreva, and V. V. Boldyrev, Russ. J. Inorg. Chem. 66, 433 (2021). https://doi.org/10.1134/S0036023621030116

    Article  CAS  Google Scholar 

  17. N. I. Radishevskaya, A. Y. Nazarova, O. V. L’vov, et al., Inorg. Mater 56, 142 (2020). https://doi.org/10.1134/S0020168520010112

    Article  CAS  Google Scholar 

  18. A. P. Chizhikov, A. S. Konstantinov, and P. M. Bazhin, Russ. J. Inorg. Chem. 66, 1115 (2021). https://doi.org/10.1134/S0036023621080039

    Article  CAS  Google Scholar 

  19. T. L. Talako, A. I. Letsko, Yu. A. Reutenok, et al., Izv. Vys. Ucheb. Zaved. 1, 22 (2019). https://doi.org/10.17073/1997-308X-2019-1-22-29

    Article  Google Scholar 

  20. A. M. Stolin, P. M. Bazhin, A. S. Konstantinov, et al., Refract. Ind. Ceram. 60, 261 (2019). https://doi.org/10.1007/s11148-019-00348-4

    Article  CAS  Google Scholar 

  21. A. M. Stolin and P. M. Bazhin, Theor. Found. Chem. Eng. 48, 751 (2014). https://doi.org/10.1134/S0040579514060104

    Article  CAS  Google Scholar 

  22. P. M. Bazhin, A. M. Stolin, V. A. Shcherbakov, et al., Dokl. Chem. 430, 58 (2010). https://doi.org/10.1134/S0012500810020072

    Article  CAS  Google Scholar 

  23. A. P. Amosov, I. P. Borovinskaya, and A. G. Merzhanov, Powder Technology of Self-Propagating High-Temperature Synthesis of Materials: Tutorial (Moscow, Mashinostroenie, 2007) [in Russian].

    Google Scholar 

  24. D. Yu. Kovalev, A. S. Konstantinov, S. V. Konovalikhin, and A. V. Bolotskaya, Combust. Explos. Shock Wave 56, 648 (2020). https://doi.org/10.1134/S0010508220060040

    Article  Google Scholar 

  25. A. M. Stolin, P. M. Bazhin, A. S. Konstantinov, et al., Ceram. Inter. 44, 13815 (2018). https://doi.org/10.1016/j.ceramint.2018.04.225

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, grant no. 22-19-00040, https://rscf.ru/project/22-19-00040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Bazhin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazhin, P.M., Konstantinov, A.S., Chizhikov, A.P. et al. Influence of Conditions of Self-Propagating High-Temperature Synthesis on Phase Composition and Structure of Materials Based on Ti–B. Russ. J. Inorg. Chem. 67, 2040–2044 (2022). https://doi.org/10.1134/S0036023622601696

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622601696

Keywords:

Navigation