Skip to main content
Log in

Intracellular pH regulation by the plasma membrane V-ATPase in Malpighian tubules of Drosophila larvae

  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The functional significance of the apical vacuolar-type proton pump (V-ATPase) in Drosophila Malpighian tubules was studied by measuring the intracellular pH (pHi) and luminal pH (pHlu) with double-barrelled pH-microelectrodes in proximal segments of the larval anterior tubule immersed in nominally bicarbonate-free solutions (pHo 6.9). In proximal segments both pHi (7.43±0.20) and pHlu (7.10±0.24) were significantly lower than in distal segments (pHi 7.70±0.29, pHlu 8.09±0.15). Steady-state pHi of proximal segments was much less sensitive to changes in pHo than pH of the luminal fluid (ΔpHlu/ΔpHo was 0.49 while ΔpHi/ΔpHo was 0.18; pHo 6.50–7.20). Re-alkaliniziation from an NH4Cl-induced intracellular acid load (initial pHi recovery rate 0.55±0.34 pH·min-1) was nearly totally inhibited by 1 mmol·l-1 KCN (96% inhibition) and to a large degree (79%) by 1 μmol·l-1 bafilomycin A1. In contrast, both vanadate (1 mmol·l-1) and amiloride (1 mmol·l-1) inhibited pHi recovery by 38% and 33%, respectively. Unlike amiloride, removal of Na+ from the bathing saline had no effect on pHi recovery, indicating that a Na+/H+ exchange is not significantly involved in pHi regulation. Instead pHi regulation apparently depended largely on the availability of ATP and on the activity of the bafilomycin-sensitive proton pump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMSO:

dimethylsulphoxide

DNP:

2,4-dinitrophenol

NMDG:

N-methyl-D-glucamine

pHi :

intracellular pH

pHlu :

pH of the luminal fluid

pHo :

pH of the superfusion medium

βI :

intrinsic intracellular buffer capacity

References

  • Bertram G (1989) Harn-Sekretion der Malpighischen Gefäße von Drosophila hydei unter dem Einfluß von Amilorid — ist ein K+/H+-Antiport betelligt? (Abstract) Verh Dtsch Zool Ges 82:203–204

    Google Scholar 

  • Bertram G (1991) Intracellular pH regulation in Malpighian tubules of Drosophila hydei affected by metabolic inhibitors and bafilomycin. (Abstract) Verh Dtsch Zool Ges 84:495–496

    Google Scholar 

  • Bertram G, Schleithoff L, Zimmermann P, Wessing A (1991) Bafilomycin A1 is a potent inhibitor of urine formation by Malpighian tubules of Drosophila hydei: is a vacuolar-type ATPase involved in ion and fluid secretion? J Insect Physiol 37:201–209

    Google Scholar 

  • Bidani A, Brown SES (1990) ATP-dependent pHi recovery in lung macrophages: evidence for a plasma membrane H+-ATPase. Am J Physiol 259:C586-C598

    Google Scholar 

  • Boron WF (1977) Intracellular pH transients in giant barnacle mucle fibers. Am J Physiol 233:C61-C73

    Google Scholar 

  • Boron WF, Boulpaep EL (1983) Intracellular pH regulation in the renal proximal tubule of the salamander (Na-H exchange). J Gen Physiol 81:29–52

    Google Scholar 

  • Boron WF, De Weer P (1976) Intracellular pH transients in squid axons caused by CO2, NH3, and metabolic inhibitors. J Gen Physiol 67:91–112

    Google Scholar 

  • Bowman EJ, Siebers A, Altendorf K (1988) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA 85:7972–7976

    Google Scholar 

  • Bradley TJ (1985) The excretory system: structure and physiology. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 4, Pergamon Press, New York, pp 421–465

    Google Scholar 

  • Burckhardt BC, Frömter E (1992) Pathways of NH3/NH4 + permeation across Xenopus laevis oocyte cell membrane. Pflügers Arch 420:83–86

    Google Scholar 

  • Chao AC, Moffett DF, Koch A (1991) Cytoplasmic pH and goblet cavity pH in the posterior midgut of the tobacco hornworm Manduca sexta. J Exp Biol 155:403–414

    Google Scholar 

  • Chatterjee D, Chakraborty M, Leit M, Neff L, Jamsakellokumpu S, Fuchs R, Barkiewicz M, Hernando N, Baron R (1992) The osteoclast proton pump differs in its pharmacology and catalytic subunits from other vacuolar H+-ATPase. J Exp Biol 172:193–204

    Google Scholar 

  • English LH, Cantley LC (1985) Delta endotoxin inhibits Rb+ uptake, lowers cytoplasmic pH and inhibits a K+-ATPase in Manduca sexta CHE cells. J Memb Biol 85:199–204

    Google Scholar 

  • Forgac M (1989) Structure and function of vacuolar class of ATP-driven proton pumps. Physiol Rev 69:765–796

    Google Scholar 

  • Frelin C, Vigne P, Ladoux A, Lazdunski M (1988) The regulation of the intracellular pH in cells from vertebrates. Eur J Biochem 174:3–14

    Google Scholar 

  • Graber M, Diepaola J, Hsiang F, Barry C, Pastoriza E (1991) Intracellular pH in the OK cell. I. Identification of H+ conductance and observations on buffering capacity. Am J Physiol 261:C1143-C1153

    Google Scholar 

  • Hanada H, Moriyama Y, Maeda M, Futai M (1990) Kinetic studies of chromaffine granule H+-ATPase and effects of bafilomycin A1. Biochem Biophys Res Commun 170:873–878

    Google Scholar 

  • Hevert F, Wolburg H, Wessing A (1974) Die Konkremente des larvalen Primärharns von Drosophila hydei. II. Die anorganischen Bestandteile. Cytobiologie 8:312–319

    Google Scholar 

  • Kikeri D, Sun A, Zeidel ML, Herbert SC (1989) Cell membranes impermeable to NH3. Nature 339:478–480

    Google Scholar 

  • Kinsella JL, Aronson PS (1980) Properties of the Na+/H+ exchanger in renal microvillus membrane vesicles. Am J Physiol 238:F461-F469

    Google Scholar 

  • Kinsella JL, Aronson PS (1981) Interaction of NH4 + and Li+ with the renal microvillus membrane Na+/H+ exchanger. Am J Physiol 241:C220-C226

    Google Scholar 

  • Klein U (1992) The insect V-ATPase, a plasma membrane proton pump energizing secondary active transport: immunological evidence for the occurrence of a V-ATPase in insect ion-transporting epithelia. J Exp Biol 172:345–354

    Google Scholar 

  • Klein U, Löffelmann G, Wieczorek H (1991) The midgut as a model system for insect K+-transporting epithelia: immunocytochemical localization of a vacuolar-type H+ pump. J Exp Biol 161:61–75

    Google Scholar 

  • Klein U, Zimmermann B (1991) The vacuolar-type ATPase from insect plasma membrane — immunocytochemical localization in insect sensilla. Cell Tissue Res 266:265–273

    Google Scholar 

  • Kleyman TR, Cragoe Jr EJ (1988) Amiloride and its analogs as tools in the study of ion transport. J Memb Biol 105:1–21

    Google Scholar 

  • Krueger RA, Broce AB, Hopkins TL, Kramer KJ (1988) Calcium transport from Malpighian tubules to puparial cuticle of Musca autumnalis. J Comp Physiol B 158:413–419

    Google Scholar 

  • Maddrell SHP (1971) The mechanisms of insect excretory systems. Adv Insect Physiol 8:199–331

    Google Scholar 

  • Maddrell SHP (1981) The functional design of the insect excretory system. J Exp Biol 90:1–15

    Google Scholar 

  • Mellergard PE, Siesjö BK (1991) Astrocytes fail to regulate intracellular pH at moderately reduced extracellular pH. Neuro Report 2:695–698

    Google Scholar 

  • Minami M, Indrasith LS, Hor H (1991) Characterization of ATPase activity in brush border membrane vesicles from the silkworm, Bombyx mori. Agric Biol Chem 55:2693–2700

    Google Scholar 

  • Moffett DF, Koch A (1992) Driving forces and pathways for H+ and K+ transport insect midgut goblet cells. J Exp Biol 172:403–415

    Google Scholar 

  • Nechay BR, Nanninga LB, Nechay PSE, Post RL, Grantham JJ, Macara IG, Kubena LF, Phillips TD, Nielsen FH (1986) Role of vanadium in biology. Fed Proc 45:123–132

    Google Scholar 

  • Nelson N (1991) Structure and pharmacology of the proton-ATPases. Trends Pharmacol Sci 12:71–75

    Google Scholar 

  • Phillips J (1981) Comparative physiology of insect renal function. Am J Physiol 241:R241-R257

    Google Scholar 

  • Robinson RA, Stokes RH (1959) Electrolyte solutions. Butterworth, London, p 461

    Google Scholar 

  • Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:296–434

    Google Scholar 

  • Russell VEW, Klein U, Reuveni M, Spaeth DD, Wolfersberger MG, Harvey WR (1992) Antibodies to mammalian and plant V-ATPases cross react with the V-ATPase of insect cation-transporting plasma membranes. J Exp Biol 166:131–143

    Google Scholar 

  • Schweikl H, Klein U, Schindlbeck M, Wieczorek H (1989) A vacuolar-type ATPase, partially purified from potassium-transporting plasma membranes of tobacco hornworm midgut. J Biol Chem 264:11136–11142

    Google Scholar 

  • Schwiening CJ, Thomas RC (1992) Mechanism of pHi regulation by locust neurones in isolated ganglia: a microelectrode study. J Physiol (Lond) 447:693–709

    Google Scholar 

  • Simon EE, Merli C, Herndon J, Cragoe EJ Jr, Hamm LL (1992) Effects of barium and 5-(N-ethyl-N-isopropyl)-amiloride on proximal tubule ammonia transport. Am J Physiol 262:F36-F39

    Google Scholar 

  • Simons TJB (1979) Vanadate — a new tool for biologists. Nature 281:337–338

    Google Scholar 

  • Thomson RB, Phillips JE (1992) Electrogenic proton secretion in the hindgut of the desert locust, Schistocerca gregaria. J Memb Biol 125:133–154

    Google Scholar 

  • Warren M, Smith JAC, Apps DK (1992) Rapid purification and reconstitution of a plant vacuolar ATPase using Triton X-114 fractionation: subunit composition and substrate kinetics of the H+-ATPase from the tonoplast of Kalanchoe daigremontiana. Biochim Biophys Acta 1106:117–125

    Google Scholar 

  • Weltens R, Leyssens A, Zhang SL, Lohrman E, Steels P, Van Kerkhove E (1992) Unmasking of the apical electrogenic H-pump in isolated Malpighian tubules (Formica polyctena) by the use of barium. Cell Physiol Biochem 2:101–116

    Google Scholar 

  • Wessing A, Bertram G, Zierold K (1993) Effects of bafilomycin A1 and amiloride on the apical potassium and proton gradients in Drosophila Malpighian tubules studies by X-ray microanalysis and microelectrode measurements. J Comp Physiol B 163:452–462

    Google Scholar 

  • Wessing A, Eichelberg D (1975) Ultrastructural aspects of transport and accumulation of substances in the Malpighian tubules. Fortschr Zool 23:148–172

    Google Scholar 

  • Wessing A, Hevert F, Rönnau K (1986) Ion transport and intracellular activity of ions in Malpighian tubules of Drosophila hydei. Zool Beitr NF 30:297–314

    Google Scholar 

  • Wessing A, Zierold K (1993) Heterogeneous distribution of elements in the larval Malpighian tubules of Drosophila hydei: X-ray microanalysis of freeze-dried cryosections. Cell Tissue Res 272:491–497

    Google Scholar 

  • Wessing A, Zierold K, Hevert F (1992) Two types of concretions in Drosophila Malpighian tubules as revealed by X-ray microanalysis: a study on urine formation. J Insect Physiol 38:543–554

    Google Scholar 

  • Wieczorek H, Putzenlechner M, Zeiske W, Klein U (1991) A vacuolar-type proton pump energizes K+/H+-antiport in an animal plasma membrane. J Biol Chem 266:15340–15347

    Google Scholar 

  • Wieczorek H, Weerth S, Schindlbeck M, Klein U (1989) A vacuolartype proton pump in a vesicle fraction enriched with potassium transporting plasma membranes from tobacco hornworm midgut. J Biol Chem 264:11143–11148

    Google Scholar 

  • Zimolo Z, Montrose MH, Murer H (1992) H+ extrusion by an apical vacuolar-type H+-ATPase in rat renal proximal tubules. J Memb Biol 126:19–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertram, G., Wessing, A. Intracellular pH regulation by the plasma membrane V-ATPase in Malpighian tubules of Drosophila larvae. J Comp Physiol B 164, 238–246 (1994). https://doi.org/10.1007/BF00354085

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00354085

Key words

Navigation