Skip to main content
Log in

A model of the early stages of the human visual system: Functional and topological transformations performed in the peripheral visual field

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A model of the early stages of the visual system is presented, with particular reference to the region of the visual field outside the fovea and to the class of retinal and lateral geniculate nucleus cells which are most active in the processing of pattern information (X-cells). The main neuroanatomical and neurophysiological properties taken into account are: the linear increase of the receptive fields diameter with eccentricity, the constancy of the overlap factor and the topological transformation operated upon the retinal image by the retino-cortical connection. The type of filtering taking place between the retina and the visual cortex is analyzed and some simulations are presented. It is shown that such a filtering is of a band-pass space variant type, with center frequencies that decrease from the center (i.e. the fovea) toward the periphery of the visual field. This processing is “form invariant” under linear scaling of the input. Moreover, considering the properties of the retino-cortical connection, it is shown that the “cortical images” undergo simple shifts whenever the retinal images are scaled or rotated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altes, R.A.: The Fourier-Mellin transform and mammalian hearing. J. Acoust. Soc. Am. 63, 174–183 (1978)

    Google Scholar 

  • Boycott, B.B., Wässle, M.: The morphological types of ganglion cells of the domestic cat's retina. J. Physiol. 240, 397–419 (1974)

    Google Scholar 

  • Braccini, C., Gambardella, G.: Linear shift-variant filtering for form-invariant processing of linearly scaled signals. Signal Processing, April 1982

  • Braccini, C., Gambardella, G., Sandini, G.: A signal theory approach to the space and frequency variant filtering performed by the human visual system. Signal Processing 3, 231–240 (1981)

    Google Scholar 

  • Bullier, C., Norton, T.T.: Comparison of receptive field properties of X and Y ganglion cells with X and Y lateral geniculate cells in the cat. J. Neurophysiol. 42, 274–291 (1979)

    Google Scholar 

  • Casasent, D., Psaltis, D.: Position, rotation and scale invariant optical correlation. Appl. Opt. 15, 1795–1799 (1976)

    Google Scholar 

  • Cleland, B.G., Dubin, M.W., Levick, W.R.: Sustained and transient neurons in the cat's retina and lateral geniculate nucleus. J. Physiol. 217, 473–496 (1971)

    Google Scholar 

  • Cleland, B.G., Levick, W.R., Wässle, H.: Physiological identification of a morphological class of cat retinal ganglion cells. J. Physiol. 248, 151–171 (1975)

    Google Scholar 

  • Crettez, J.P.: A visual model based on the overlapping of the cell receptive fields in the visual pathway. In: Proc. of the First Scandinavian Conf. on Image Analysis, Linkoeping, Sweden 1980

  • Daniel, P.M., Whitteridge, D.: The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. 159, 203–221 (1961)

    Google Scholar 

  • Drasdo, N.: The neural representation of visual space. Nature 266, 554–556 (1977)

    Google Scholar 

  • Enroth-Cugell, C., Robson, J.G.: The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. 187, 517–552 (1966)

    Google Scholar 

  • Fischer, B.: Overlap of receptive field centers and representation of the visual field in the cat's optic tract. Vision Res. 13, 2113–2120 (1973)

    Google Scholar 

  • Granit, R.: Sensory mechanisms of the retina. London: Oxford University Press 1947

    Google Scholar 

  • Granlund, G.H.: In search of a general picture processing operator. Comput. Graph. Im. Proc. 8, 155–173 (1978)

    Google Scholar 

  • Hochstein, S., Shapley, R.M.: Quantitative analysis of retinal ganglion cell classifications. J. Physiol. 262, 237–264 (1976a)

    Google Scholar 

  • Hochstein, S., Shapley, R.M.: Linear and non-linear spatial subunits in Y cat retinal ganglion cells. J. Physiol. 262, 265–284 (1976b)

    Google Scholar 

  • Hubel, D.M., Wiesel, T.N.: Receptive field of optic nerve fibers in the spider monkey. J. Physiol. 154, 572–580 (1960)

    Google Scholar 

  • Hubel, D.M., Wiesel, T.N.: Integrative action in the cat's lateral geniculate body. J. Physiol. 155, 385–398 (1961)

    Google Scholar 

  • Hubel, D.M., Wiesel, T.N.: Uniformity of monkey striate cortex: a parallel relationship between field size, scatter and magnification factor. J. Comp. Neurol. 158, 295–302 (1974)

    Google Scholar 

  • Ikeda, M., Wright, M.J.: Differential effects of refractive errors and receptive field organization of central and peripheral ganglion cells. Vision Res. 12, 1465–1476 (1972)

    Google Scholar 

  • Kuffler, S.W.: Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37–63 (1953)

    Google Scholar 

  • Maffei, L., Fiorentini, A.: The visual cortex as a spatial frequency analyzer. Vision Res. 13, 1255–1267 (1973)

    Google Scholar 

  • Maffei, L., Fiorentini, A.: Spatial frequency rows in the striate visual cortex. Vision Res. 17, 257–264 (1977)

    Google Scholar 

  • Marr, D.: Early processing of visual information. Philos. Trans. R. Soc. London B 275, 483–524 (1976)

    Google Scholar 

  • Marr, D., Poggio, T., Ulman, S.: Bandpass channels, zero-crossings, and early visual information processing. J. Opt. Soc. Am. 69, 914–916 (1979)

    Google Scholar 

  • Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. B 207, 187–217 (1980)

    Google Scholar 

  • Osterberg, G.: Popography of the layer of rods and cones in the human retina. Acta Ophthal. Suppl. 6, 1–103 (1935)

    Google Scholar 

  • Peichl, L., Wässle, M.: Size, scatter and coverage of ganglion cell receptive field centers in the cat retina. J. Physiol. 291, 117–141 (1979)

    Google Scholar 

  • Pirenne, M.H.: Vision and the eye. London: Chapman and Hall 1967

    Google Scholar 

  • Rodieck, R.W., Stone, J.: Analysis of receptive fields of cats retinal ganglion cells. J. Neurophysiol. 28, 833–849 (1965)

    Google Scholar 

  • Rose, D.: Mechanisms underlying the receptive field properties of neurons in the cat visual cortex. Vision Res. 19, 533–544 (1979)

    Google Scholar 

  • Rovamo, J., Virsu, V., Näsänen, R.: Cortical magnification factor predicts the photonic contrast sensitivity of peripheral vision. Nature 271, 54–56 (1978)

    Google Scholar 

  • Sandini, G., Tagliasco, V.: An anthropomorphic retina-like structure for scene analysis. Comput. Graph. Im. Proc. 14, 365–372 (1980)

    Google Scholar 

  • Schwartz, E.L.: Spatial mapping in the primate sensory projection: analytic structure and relevance to perception. Biol. Cybern. 25, 181–194 (1977)

    Google Scholar 

  • Schwartz, E.L.: A quantitative model of the functional architecture of human striate cortex with application to visual illusion and cortical texture analysis. Biol. Cybern. 37, 63–76 (1980a)

    Google Scholar 

  • Schwartz, E.L.: Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding. Vision Res. 20, 645–669 (1980b)

    Google Scholar 

  • Stone, J.: A quantitative analysis of the distribution of ganglion cells in the cat's retina. J. Comp. Neurol. 124, 337–352 (1965)

    Google Scholar 

  • Stone, J., Hoffmann, K.P.: Very slow-conduction ganglion cells in the cat's retina: a major new functional type? Brain Res. 43, 610–616 (1972)

    Google Scholar 

  • Weiman, C.F.R., Chaikin, G.: Logarithmic spiral grids for image processing and display. Comput. Graph. Im. Proc. 11, 197–226 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braccini, C., Gambardella, G., Sandini, G. et al. A model of the early stages of the human visual system: Functional and topological transformations performed in the peripheral visual field. Biol. Cybern. 44, 47–58 (1982). https://doi.org/10.1007/BF00353955

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00353955

Keywords

Navigation