Skip to main content
Log in

Microstructure and fracture toughness of nickel particle toughened alumina matrix composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Al2O3-Ni composite materials have been made by a hot pressing technique. Two composite microstructures, i.e. a dispersive distribution of nickel particles and a network distribution of nickel particles in an alumina matrix, have been produced. The fracture toughness of the composite materials has been measured by a double cantilever beam method. Both composites are tougher than the virgin alumina matrix. The fracture toughness of the composite with a network microstructure is much higher and has a more desirable R-curve behaviour than the composite with a microstructure of dispersed particles. For the particulate dispersion microstructure, the main limitation to toughening is the lack of plastic deformation of the ductile nickel due to the pull out of nickel particles, indicating weak bonding at the Al2O3/Ni interface. For the network microstructure composite, the gauge length of the ductile phase is much larger, allowing the ductile nickel to stretch to failure between the crack faces. A large extent of nickel plastic deformation has been observed, and the weak bonding at the Al2O3/Ni interface can promote partial debonding and contribute further to toughening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Rühle and A. G. Evans, Prog. Mater. Sci. 33 (1989) 85.

    Article  Google Scholar 

  2. P. Hing and G. W. Groves, J. Mater. Sci. 7 (1972) 427.

    Article  CAS  Google Scholar 

  3. M. S. Newkirk, A. W. Urquart and H. R. Zwicker, J. Mater. Res. 1 (1986) 81.

    Article  CAS  Google Scholar 

  4. B. D. Flinn, M. Rühle and A. G. Evans, Acta Metall. 37 (1989) 3001.

    Article  CAS  Google Scholar 

  5. D. C. Halverson, A. Pyzik, I. A. Aksay and W. E. Snowden, J. Amer. Ceram. Soc. 72 (1989) 775.

    Article  CAS  Google Scholar 

  6. A. K. Bhattacharya and J. J. Petrovic, J. Mater. Sci. 27 (1992) 2205.

    Article  CAS  Google Scholar 

  7. V. V. Krstic, P. S. Nicholson and R. G. Hoagland, J. Amer. Ceram. Soc. 64 (1981) 499.

    Article  CAS  Google Scholar 

  8. X. Sun, P. A. Trusty, J. A. Yeomans and H. R. Shercliff, in Proceedings of the ICCM/VIII, Honolulu, July 1991, edited by S. W. Tsai and G. S. Springer (SAMPE, 1991) p. 17J1–10.

  9. X. Sun and J. A. Yeomans, Special Ceram. 9 (1990) 297.

    Google Scholar 

  10. B. D. Flinn, C. S. Lo, F. W. Zok and A. G. Evans, J. Amer. Ceram. Soc. 76 (1993) 369.

    Article  CAS  Google Scholar 

  11. Z. Chen and J. J. Mecholsky, ibid. 76 (1993) 1258.

    Article  CAS  Google Scholar 

  12. V. D. Krstic, Phil. Mag. A 48 (1983) 695.

    Article  Google Scholar 

  13. M. F. Ashby, F. J. Blunt and M. Bannister, Acta Metall. 37 (1989) 1847.

    Article  CAS  Google Scholar 

  14. ASM Handbook, “Metals Handbook, Properties and Selection: Non-ferrous Alloys and Pure Metals”, Vol. 2, Ninth Edn (American Society for Metals, Metals Park, OH 1979) p. 777.

    Google Scholar 

  15. R. Morrell “Handbook of Properties of Technical & Engineering Ceramics. Part 2: Data Reviews: Section I: High-alumina Ceramics” (HMSO, 1987) p. 59.

  16. P. A. Trusty, PhD thesis, University of Surrey (1994).

  17. M. H. Lewis, R. H. Seebohm and J. W. Martin, Powder Metall. 10 (1962) 87.

    Article  Google Scholar 

  18. J. A. Dromsky, F. V. Lenel and G. S. Ansell, Trans. Amer. Inst. Min. Metall. Eng. 224 (1962) 236.

    CAS  Google Scholar 

  19. A. U. Seybolt, in “Oxide Dispersion Strengthening”, Metal Society Conference, Vol. 49, edited by G. S. Ansell, T. D. Cooper and F. V. Lenel (Gordon & Breach, New York, 1968) p. 469.

    Google Scholar 

  20. R. L. Mehan, Metall. Trans. 3 (1972) 897.

    Article  CAS  Google Scholar 

  21. H. E. Dève, A. G. Evans, G. R. Odette, R. Mehrabian, M. L. Emiliani and R. J. Hecht, Acta Metall. Mater. 38 (1990) 1491.

    Article  Google Scholar 

  22. T. L. Jessen and D. Lewis 111, J. Amer. Ceram. Soc. 72 (1989) 818.

    Article  CAS  Google Scholar 

  23. R. H. Moore and S. C. Kunz, Ceram. Eng. Sci. Proc. 8 (1987) 839.

    Article  CAS  Google Scholar 

  24. A. J. Pyzik, I. A. Aksay and M. Sarikaya, in “Ceramic Microstructure '86”, edited by J. A. Pask and A. G. Evans (Plenum Press, New York, 1987) p. 45.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Yeomans, J.A. Microstructure and fracture toughness of nickel particle toughened alumina matrix composites. JOURNAL OF MATERIALS SCIENCE 31, 875–880 (1996). https://doi.org/10.1007/BF00352885

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352885

Keywords

Navigation