Skip to main content
Log in

Incorporation of copy-number control elements into yeast artificial chromosomes by targeted homologous recombination

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

We have developed a pair of vectors for exchanging yeast artificial chromosome (YAC) arms by targeted homologous recombination. These conversion vectors allow the introduction of copy-number control elements into YACs constructed with pYAC4 or related vectors. YACs modified in this way provide an enriched source of DNA for genetic or biochemical studies. A LYS2 gene on the conversion vector provides a genetic selection for the modified YACs after transformation with appropriately prepared vector. A background of Lys+ clones that do not contain modified YACs is also present. However, clones with converted YACs can be distinguished from this background by counter-screening for loss of the original p YAC4 TRP1 arm (Trp- phenotype). The elimination of yeast replication origins (ARS elements) from the conversion vectors increased the frequency of Lys+ Trp- clones, but resulted in weaker amplification. Several YACs have been converted with these vectors, and the fate of the transformed DNA and of the resident YAC DNA has been systematically investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amin, A.A. and Pearlman, R.E. (1985). Autonomously replicating sequences from the non-transcribed spacers of Tetrahymena thermophilia ribosomal DNA. Nucleic Acids Res. 13, 2647–2659.

    Google Scholar 

  • Barnes, D.A. and Thorner, J. (1986). Genetic manipulation of Saccharomyces cerevisiae by use of the LYS2 gene. Mol Cell Biol 6, 2828–2830.

    Google Scholar 

  • Braman, J. (1989). Prime-it random primer kit. Strategies Mol. Biol. 2, 56–57.

    Google Scholar 

  • Brownstein, B.H., Silverman, G.A., Little, R.D., Burke, D.T., Korsmeyer, S.J., Schlessinger, D., and Olson, M.V. (1989). Isolation of single-copy human genes from a library of yeast artificial chromosome clones. Science 244, 1348–1351

    Google Scholar 

  • Burgers, P. and Percival, K. (1987). Transformation of yeast spheroplasts without cell fusion. Anal. Biochem. 163, 391–397.

    Google Scholar 

  • Burke, D.T., Carle, G.F., and Olson, M.V. (1987). Cloning of large DNA segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806–816.

    Google Scholar 

  • Campbell, C., Gulati R., Nandi, A.K., Floy, K., Heiter, P., and Kucherlapati, R.S. (1991). Generation of a nested series of interstitial deletion in yeast artificial chromosomes carrying human DNA. Proc. Natl. Acad. Sci. USA 88, 5744–5748.

    Google Scholar 

  • Cooke, H. and Cross, S. (1988). pYAC-4 Neo, a yeast artificial chromosome vector which codes for G418 resistance in mammalian cells. Nucleic Acids Res. 16, 11817.

    Google Scholar 

  • Eliceiri, B., Labella, T., Hagino, Y., Srivastava, A., Schlessinger, D., Pilia, G., Palmieri, G. and D'Urso, M..(1991). Stable integration and expression in mouse cells of yeast artificial chromosomes harboring human genes. Proc. Natl. Acad. Sci. USA 88, 2179–2183.

    Google Scholar 

  • Esposito, M.S., Wagstaff, J.E. (1981). Mechanisms of mototic recombination. In The Molecular Biology of the Yeast Saccharomyces; Life Cycle and Inheritance, J. Strathern, E.W. Jones, and J.R. Broach, eds. (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press), pp. 000–000.

    Google Scholar 

  • Fernandez-Luna, J.L., Matthews, J.R., Brownstein, B.H., Schreiber, R.D., and Thomas, M.L. (1991). Characterization and expression of the human leukocyte-common antigen (CD45) gene contained in yeast artificial chromosomes. Genomics 10, 756–764.

    Google Scholar 

  • Garza, D., Ajioka, J.W., Burke, D.T., and Hartl, D.L. (1989). Mapping the Drosophila genome with yeast artificial chromosomes. Science 246, 641–646.

    Google Scholar 

  • Gnirke, A., Barnes, T.S., Patterson, D., Schild, D., Featherstone, T., and Olson, M.V. (1991). Cloning and in vivo expression of the human GART gene using yeast artificial chromosomes. EMBO J. 10, 1629–1634.

    Google Scholar 

  • Gottschling, D.E., Aparicio, O.M., Billington, B.L., and Zakian, V.A.: (1990). Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751–762.

    Google Scholar 

  • Hieter, P., Connelly, C., Shero, J., McCormack, M.K., Antonarakis, S., Pavan, W., and Reeves, R. (1990). Yeast artificial chromosomes: promises kept and pending. In Genome Analysis, Volume 1: Genetic and Physical Mapping. Cold Spring Harbor Laboratory Press, pp. 000-000.

  • Hightower, R.C., Metge, D.W., and Santi, D.V. (1987). Plasmid migration using orthogonal field alternation gel electrophoresis. Nucleic Acids Res. 15, 8387–8398.

    Google Scholar 

  • Hill, A. and Bloom, K. (1987). Genetic manipulation of centromere function. Mol. Cell. Biol. 7, 2397–2405.

    Google Scholar 

  • Huxley, C., Hagino, Y., Schlessinger, D., and Olson, M.V. (1991). The human HPRT gene on a yeast artificial chromosome is functional when transferred to mouse cells by cell fusion. Genomics 9, 742–750.

    Google Scholar 

  • Lambie, E.J. and Roeder, G.S. (1988). A yeast centromere acts in cis to inhibit meiotic gene conversion of adjacent sequences. Cell 52, 863–873.

    Google Scholar 

  • Link, A.J. and Olson, M.V. (1991). Physical map of the Saccharomyces cerevisiae genome at 110-kilobase resolution. Genetics 127, 681–698.

    Google Scholar 

  • Orr-Weaver, T.L., Szostak, J.W., and Rothstein, R.J. (1981). Yeast transformation: a model system for the study of recombination. Proc. Natl. Acad. Sci. USA 78, 6354–6358.

    Google Scholar 

  • Pachnis, V., Pevny, L., Rothstein, R., and Costantini, F. (1990). Transfer of a yeast artificial chromosome carrying human DNA from Saccharomyces cerevisiae into mammalian cells. Proc. Natl. Acad. Sci. USA 87, 5109–5113.

    Google Scholar 

  • Pavan, W.J., Hieter, P. and Reeves, R.J. (1990a). Modification and transfer into and embryonal carcinoma celllline of a 360-kilobase human-derived yeast artificial chromosome. Mol. Cell. Biol 10, 4163–4169.

    Google Scholar 

  • Pavan, W.J., Hieter, P., and Reeves, R.H. (1990b). Generation of deletion derivatives by targeted transformation of human-derived yeast artificial chromosomes. Proc. Natl. Acad. Sci. USA 87, 1300–1304.

    Google Scholar 

  • Pavan, W.J., Hieter, P., Sears, D., Burkhoff, A., and Reeves, R.H. (1991). High efficiency yeast artificial chromosome fragmentation vectors. Gene 106, 125–127

    Google Scholar 

  • Rothstein, R. (1991). Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194, 000–000.

    Google Scholar 

  • Schedl, A., Beerman, F., Thies, E., Montoliu, L., Kelsey G., and Schutz, G. (1992). Transgenic mice generated by pronuclear injection of a yeast artificial chromosome. Nucleic Acids Res. 20, 3073–3077.

    Google Scholar 

  • Shampay, J., Szostak, J.W., and Blackburn, E.J. (1984). DNA sequences of telomeres maintained in yeast. Nature 310. 154–157.

    Google Scholar 

  • Sherman, F., Fink, G.R., and Hicks, J.B. (1986). Laboratory Course Manual for Methods in Yeast Genetics. (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press).

    Google Scholar 

  • Smith, D.R. (1990). Genomic long-range restriction mapping. Methods, a Companion to Methods in Enzymology 1, 195–203.

    Google Scholar 

  • Smith, D.R., Smyth, A.P., and Moir, D.T. (1990). Amplification of large artificial chromosomes. Proc. Natl. Acad. Sci. USA 87, 8242–8246.

    Google Scholar 

  • Smith, D.R., Smyth, A.P., and Moir, D.T. (1992). Copy number amplification of yeast artificial chromosomes. In Methods Enzymol. 216, 603–614.

    Google Scholar 

  • Sorbral, B.W.S. and Atherly, A. (1989). Pulse time and agarose concentration affect the electrophoretic mobility of cccDNA during electrophoresis in CHEF and in FIGE. Nucleic Acids Res. 17, 7359–7369.

    Google Scholar 

  • Srivastava, A.K. and Schlessinger, D. (1991). Vectors for inserting selectable markers in vector arms and human DNA inserts of yeast artificial chromosomes (YACs). Gene 103, 53–59.

    Google Scholar 

  • Strauss, W.M. and Jaenisch, R. (1992). Molecular complementation of a collagen mutation in mammalian cells using yeast artificial chromosomes. EMBO J. 11, 417–422.

    Google Scholar 

  • Strauss, W.M., Jaenisch, E. and Jaenisch, R. (1992). A strategy for rapid production and screening of yeast artificial chromosome libraries. Mammalian Genome 2, 150–157.

    Google Scholar 

  • Struhl, K., Stinchcomb, D.T., Scherer, S., and Davis, R.W. (1979). High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Natl. Acad. Sci. USA 76, 1035–1039.

    Google Scholar 

  • Traver, C.N., Klapholz, S., Hyman, R.W., and Davis, R.W. (1989). Rapid screening of a human genomic library in yeast artificial chromosomes for single-copy sequences. Proc. Natl. Acad. Sci. USA 86, 5898–5902.

    Google Scholar 

  • Voytas, D. (1989). Agarose gel electrophoresis, In Current Protocols in Molecular Biology, Vol 1., F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Morre, J.G. Seidman, J.A. Smith, and K. Struhl, eds. (New York: John Wiley & Sons), pp. 2.5.1–2.5.9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, D.R., Smyth, A.P., Strauss, W.M. et al. Incorporation of copy-number control elements into yeast artificial chromosomes by targeted homologous recombination. Mammalian Genome 4, 141–147 (1993). https://doi.org/10.1007/BF00352229

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352229

Keywords

Navigation