Skip to main content
Log in

Targeted integration into the Acremonium chrysogenum genome: disruption of the pcbC gene

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The cephalosporin C-producing fungus Acremonium chrysogenum was transformed to hygromycin B resistance using different vector constructs. These constructs contain sequences of the pcbC gene from A. chrysogenum, encoding isopenicillin N synthetase. Detailed analysis of transformants, including pulsed-field gel electrophoresis (PFGE), suggests that integration of multiple vector copies takes place predominantly via non-homologous integration. By increasing the length of vector-DNA homologous to genomic DNA, integration occurs more frequently into chromosome VI, carrying the endogencous pcbC gene copy. In gene disruption experiments, the length of vector homology required to obtain cephalosporin C-minus transformants was investigated. Inactivation of the pcbC gene was observed only when homologous fragments of more than 3.0 kb were used on both sites of the resistance cassette. Southern analysis indicated homologous, as well as heterologous, integration of recombinant DNA. The integration of multiple vector copies leads to the appearance of truncated pcbC transcripts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barredo JL, Díez B, Alvarez E, Martín JF (1989) Mol Gen Genet 16:453–459

    Google Scholar 

  • Binninger DM, Le Chevanton L, Skrzynia C, Shubkin CD, Pukkila PJ (1991) Mol Gen Genet 227:245–251

    Google Scholar 

  • Buckholz RG, Gleeson MAG (1991) Bio/Technology 9:1067–1072

    Google Scholar 

  • Case ME (1986) Genetics 113:569–587

    Google Scholar 

  • Cheevadhanarak S, Renno DV, Saunders G, Holt G (1991) Gene 108:151–155

    Google Scholar 

  • Durand N, Reymond P, Fèvre M (1991) Curr Genet 19:149–153

    Google Scholar 

  • Fincham JRS (1989) Microbiol Rev 53:148–170

    Google Scholar 

  • Gems D, Johnstone IJ, Clutterbuck AJ (1991) Gene 98:61–67

    Google Scholar 

  • Giasson L, Specht CA, Milgrim C, Novotny CP, Ullrich RC (1989) Mol Gen Genet 218:72–77

    Google Scholar 

  • Goyon C, Faugeron G (1989) Mol Cell Biol 9:2818–2827

    Google Scholar 

  • Gritz L, Davies J (1983) Gene 25:179–188

    Google Scholar 

  • Gutiérrez S, Díez B, Montenegro E, Martín JF (1991) J Bacteriol 173:2354–2365

    Google Scholar 

  • Gwyn Jones I, Sealy-Lewis HM (1989) Curr Genet 15:135–142

    Google Scholar 

  • Hasty P, Rivera-Pérez J, Bradley A (1991) Mol Cell Biol 11:5586–5591

    Google Scholar 

  • Hata Y, Kitamoto K, Gomi K, Kumagai C, Tamura G (1992) Curr Genet 22:85–91

    Google Scholar 

  • Hoge JHC, Springer J, Zanting B, Wessles JGH (1982) Exp Mycol 6:225–232

    Google Scholar 

  • Hoskins JA, O'Callaghan N, Queener SW, Cantwell CA, Wood JS, Chen VJ, Skatrud PL (1990) Curr Genet 18:523–530

    Google Scholar 

  • Hunter GD, Bailey CR, Arst HN Jr (1992) Curr Genet 22:377–383

    Google Scholar 

  • Isogai T, Fukagawa M, Aramori I, Iwami M, Kojo H, Ono T, Ueda Y, Kohsaka M, Imanaka H (1991) Bio/Technology 9:188–191

    Google Scholar 

  • Keller NP, Bergstrom GC, Yoder OC (1991) Curr Genet 19:227–233

    Google Scholar 

  • Khasanov FK, Zvingila DJ, Zainullin AA, Prozorov AA, Bashkirov VI (1992) Mol Gen Genet 234:494–497

    Google Scholar 

  • Kistler HC, Benny U (1992) Gene 117:81–89

    Google Scholar 

  • Kück U, Walz M, Mohr G, Mracek M (1989) Appl Microbiol Biotechnol 31:358–365

    Google Scholar 

  • Le Chevanton L, Leblon G, Lebilcot S (1989) Mol Gen Genet 218:390–396

    Google Scholar 

  • Lopes TS, Hakkaart G-JAJ, Koerts BL, Raué HA, Planta RJ (1991) Gene 105:83–90

    Google Scholar 

  • Malmberg L-H, Hu W-S (1992) Appl Microbiol Biotechnol 38:122–128

    Google Scholar 

  • Mansour SL, Thomas KR, Capecchi MR (1988) Nature 336:348–352

    Google Scholar 

  • Mathison L, Soliday S, Stepan T, Aldrich T, Rambosek J (1993) Curr Genet 23:33–41

    Google Scholar 

  • Mézard C, Pompon D, Nicolas A (1992) Cell 70:659–670

    Google Scholar 

  • Osiewacz HD, Skaletz A, Esser K (1991) Appl Microbiol Biotechnol 35:38–45

    Google Scholar 

  • Picard M, Debuchy R, Julien J, Brygoo Y (1987) Mol Gen Genet 210:129–134

    Google Scholar 

  • Punt PJ, Greaves PA, Kuyvenhoven A, van Deutekom JCT, Kinghorn JR, Pouwels PH, van den Hondel CAMJJ (1991) Gene 104:119–122

    Google Scholar 

  • Queener SW, Ingolia TD, Skatrud PL, Chapman JL, Kaster KR (1985) A system for genetic transformation of Cephalosporium acremonium. In: Leive L (ed) Microbiology-1985. American Society for Microbiology, Washington D.C., pp 468–472

    Google Scholar 

  • Razanamparany V, Bégueret J (1988) Gene 74:399–409

    Google Scholar 

  • Sakai A, Shimizu Y, Hishinuma F (1990) Appl Microbiol Biotechnol 33:302–306

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Schiestl RH, Petes TD (1991) Proc Natl Acad Sci USA 88:7585–7589

    Google Scholar 

  • Selker EU, Cambareri EB, Jensen BC, Haack KR (1987) Cell 51:741–752

    Google Scholar 

  • Shen P, Huang HV (1986) Genetics 112:441–457

    Google Scholar 

  • Skatrud PL, Queener SW (1989) Gene 78:331–338

    Google Scholar 

  • Skatrud PL, Queener SW, Carr LG, Fisher DL (1987) Curr Genet 12:337–348

    Google Scholar 

  • Skatrud PL, Tietz AJ, Ingolia TD, Cantwell CA, Fisher DL, Chapman JL, Queener SW (1989) Bio/Technology 7:477–485

    Google Scholar 

  • Smith AW, Ramsden M, Peberdy JF (1992) Gene 114:211–216

    Google Scholar 

  • Smith DJ, Bull JH, Edwards J, Turner G (1989) Mol Gen Genet 216:492–497

    Google Scholar 

  • Stauffer JF, Schwartz LJ, Brady CW (1966) Dev Ind Microbiol 7:104–113

    Google Scholar 

  • Steele PE, Carle GF, Kobayshi GS, Medoff G (1989) Mol Cell Biol 9:983–987

    Google Scholar 

  • Struhl K (1983) Nature 305:391–397

    Google Scholar 

  • Struhl K, Cameron JR, Davies RW (1976) Proc Natl Acad Sci USA 73:1471–1475

    Google Scholar 

  • Tsukuda T, Carleton S, Fotheringham S, Holloman WK (1988) Mol Cell Biol 8:3703–3709

    Google Scholar 

  • Waldron C, Murphy EB, Roberts JL, Gustafson GD, Armur SL, Malcom SK (1985) Plant Mol Biol 5:103–108

    Google Scholar 

  • Walz M (1992) Bibl Mycol 147

  • Walz M, Kück U (1991) Curr Genet 19:73–76

    Google Scholar 

  • Ward M, Wilson LJ, Kodama KH, Rey MW, Berka RM (1990) Bio/Technology 8:435–440

    Google Scholar 

  • Whitehead MP, Gurr SJ, Grieve C, Unkles SE, Spence D, Ramsden M, Kinghorn JR (1990) Gene 90:193–198

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Wolf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walz, M., Kück, U. Targeted integration into the Acremonium chrysogenum genome: disruption of the pcbC gene. Curr Genet 24, 421–427 (1993). https://doi.org/10.1007/BF00351851

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351851

Key words

Navigation