Skip to main content
Log in

Toughness characterization of niobium-bearing HSLA steels

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Estimates of toughness in terms of Charpy impact energy and the critical stress intensity factor, KICV using deeply chevron-notched specimens were made for two casts of niobium-bearing high-strength low-alloy (HSLA) steels. KICV determinations are carried out for the first time using both three- and four-point bend loading configurations for this material. Quantitative analyses of the material microstructures are made with respect to the amount of the phases, ferrite grain size, and the volume fraction, length, aspect ratio, and mean inter-spacings of the inclusions. A comparative study of impact and fracture toughness with regard to the microstructural parameters, indicates that the latter toughness characterization approach is far superior to the former. The compatibility of the estimated values of KICV using the two different loading configurations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Woodhead and S. R. Keown, in “HSLA Steels-Metallurgy and Applications”, edited by J. M. Gray, T. Ko, Zhang Shouhua, Wu Baorong, Xie Xishan (ASM International, 1986) p. 15.

  2. J. Crane (ed.), Proceedings of an International Symposium on HSLA steels, Microalloying 75, Washington DC, October 1–3, 1975 (John Crane, Union Carbide Corporation, Metals Division, Washington, DC 1977).

    Google Scholar 

  3. M. Korchynski (ed.), “Proceedings of an International Conference on HSLA Steels Technology and Applications”, Philadelphia, PA, October 1983, (Union Carbide Corporation, 1984).

  4. J. M. Gray, T. Ko, Zhang Shouhua, Wu Baorong, Xie Xishan (eds), “Proceedings of an International Conference on HSLA Steels' 85”, Beijing, China, November 4–8, 1985 (ASM International, Beijing, 1986).

    Google Scholar 

  5. A. T. Davenport (ed.), Proceedings of a Symposium on Formable HSLA and Dual Phase Steels, Chicago, IL, October 26, 1977, (Metallurgical Society of AIME, Chicago, IL, 1979).

    Google Scholar 

  6. “Proceedings of an International Conference on HSLA Steels' 90”, Beijing, China, October 28–November 2, 1990 (TMS, USA).

  7. American Society for Testing of Materials, “Standard Practice for R-Curve determination,” E561-86 (ASTM, Philadelphia, PA, 1986).

    Google Scholar 

  8. American Society for Testing of Materials, “Plane Strain Fracture Toughness for Metallic Materials,” E399-83 (ASTM, Philadelphia, PA, 1983).

    Google Scholar 

  9. American Society for Testing of Materials, “Standard Test Method for J IC A Measure of Fracture Toughness”, E813-87 (ASTM, Philadelphia, PA, 1987).

    Google Scholar 

  10. British Standards Institution, “Methods for Crack Opening Displacement (COD) Testing”, BS 5762 (1979).

  11. L. M. Barker, Eng. Fract. Mech. 9 (1977) 361.

    Article  Google Scholar 

  12. J. C. Newman Jr, in “Chevron Notched Specimens: Testing and Stress Analysis,” ASTM STP 855, edited by J. H. Underwood, S. W. Freiman and F. I. Baratta (American Society for Testing and Materials, Philadelphia, PA, 1984) p. 5.

    Chapter  Google Scholar 

  13. K. K. Ray and S. Ray, in “Proceedings of International Symposium on Fatigue and Fracture in Steel and Concrete Structures”, Madras, December 1991, edited by A. G. Madhava Rao and T. V. S. R. Appa Rao (Oxford and IBH, New Delhi, 1991) p. 317.

    Google Scholar 

  14. J. Nakayama, Jpn J. App. Phys. 30 (1964) 422.

    Article  Google Scholar 

  15. H. G. Tattersall and G. Tappin, J. Mater. Sci. 1 (1966) 296.

    Article  Google Scholar 

  16. L. P. Pook, Int. J. Fract. Mech. 8 (1972) 103.

    Article  Google Scholar 

  17. J. I. Bluhm, Eng. Fract. Mech. 7 (1975) 593.

    Article  Google Scholar 

  18. L. M. Barker and F. I. Baratta, J. Test. Eval. 8 (1980) 97.

    Article  CAS  Google Scholar 

  19. J. L. Shannon Jr, R. T. Bubsey, W. S. Pierce and D. Munz, Int. J. Fract. 19 (1982) R55.

    Article  Google Scholar 

  20. J. F. Beech and A. R. Ingraffea, ibid 18 (1982) 217.

    Google Scholar 

  21. L. M. Barker, in “Fracture Mechanics of Ceramics”, Vol. 3, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1978) p. 483.

    Google Scholar 

  22. L. M. Barker and W. C. Leslie, in “Advances in Research on the Strength and Fracture of Materials”, Vol. 2A, edited by D. M. R. Taplin (Pergamon Press, New York, 1977) p. 98.

    Google Scholar 

  23. D. Munz, Eng. Fract. Mech. 15 (1981) 231.

    Article  CAS  Google Scholar 

  24. L. M. Barker, in “Chevron Notched Specimens: Testing and Stress Analysis”, ASTM STP 855, edited by J. H. Underwood, H. W. Freiman and F. I. Baratta (American Society for Testing and Materials, Philadelphia, PA, 1984) p. 117.

    Chapter  Google Scholar 

  25. J. Hong and P. Schwarzkopf, ibid.“, p. 297.

    Chapter  Google Scholar 

  26. Wang Chizhi, Yuan Maochan and Chen Tzeguang, ibid“, p. 193.

    Chapter  Google Scholar 

  27. K. R. Brown, ibid.“, p. 237.

    Chapter  Google Scholar 

  28. J. L. Shannon and D. G. Munz, ibid“, p. 270.

    Chapter  Google Scholar 

  29. J. Eschweiler, G. Marci and D. G. Munz, ibid.“, p. 255.

    Chapter  Google Scholar 

  30. A. Mendelson and L. J. Ghosn, ibid.“, p. 69.

    Chapter  Google Scholar 

  31. R. J. Sanford and R. Chona, ibid.“, p. 81.

    Chapter  Google Scholar 

  32. L. M. Barker, in “Short Rod and Short Bar Fracture Toughness Specimen Geometries and Test Methods for Metallic Materials”, ASTM STP 743, edited by R. Roberts (American Society for Testing and Materials, Philadelphia, PA, 1981) p. 456.

    Google Scholar 

  33. Idem, in “Fracture Mechanics Applied to Brittle Materials”, ASTM STP 678, edited by S. W. Freiman (American Society of Testing and Materials, Philadelphia, PA, 1979) p. 73.

    Chapter  Google Scholar 

  34. D. Munz, R. T. Bubsey and J. L. Shannon Jr, J. Test. Eval. 8 (1980) 103.

    Article  CAS  Google Scholar 

  35. Wu Shang-Xian, Eng. Fract. Mech. 19 (1984) 221.

    Article  Google Scholar 

  36. T. T. Shih, ibid. 14 (1981) 821.

    Article  Google Scholar 

  37. Idem, J. Test. Eval. 9 (1981) 50.

    Article  Google Scholar 

  38. Wu Shang-Xian, Int. J. Fract. 19 (1982) R27.

    Article  Google Scholar 

  39. L. Chuck, E. R. Fuller Jr and S. W. Freiman, in “Chevron Notched Specimens: Testing and Stress Analysis”, ASTM STP 855, edited by J. H. Underwood, S. W. Freiman and F. I. Baratta (American Society for Testing and Materials, Philadelphia, PA, 1984) p. 167.

    Chapter  Google Scholar 

  40. Wu Shang-Xian, ibid.“, p. 176.

    Chapter  Google Scholar 

  41. I. Bar-On, F. R. Tuler and I. Roman, ibid.“, p. 98.

    Chapter  Google Scholar 

  42. R. F. Krause Jr and E. R. Fuller Jr, ibid.“, p. 309.

    Chapter  Google Scholar 

  43. D. Munz, R. T. Bubsey and J. L. Shannon Jr, J. Am. Ceram. Soc. 63 (1980) 300.

    Article  CAS  Google Scholar 

  44. D. G. Munz, J. L. Shannon Jr and R. T. Bubsey, Int. J. Fract. 16 (1980) R137.

    Article  Google Scholar 

  45. P. A. Withey and P. Bowen, ibid. 46 (1990) R55.

    Article  Google Scholar 

  46. J. F. Knott, in “Fundamentals of Fracture Mechanics” (Butterworths, London, 1981) p. 136.

    Google Scholar 

  47. G. F. Vander Voort, in “Metallography Principles and Practice”, (McGraw Hill, New York, 1984) p. 410.

    Google Scholar 

  48. JIS G-0555-1977, “Microscopic Testing Method for the Nonmetallic Inclusions in Steels”, JIS Handbook, Ferrous Materials and Metallurgy (Japanese Standards Association, 1991).

  49. American Society for Testing and Materials, “Standard Methods of Tension Testing of Metallic Materials”, E8-87 (ASTM, Philadelphia, PA, 1987).

    Google Scholar 

  50. American Society for Testing and Materials, “Standard Methods for Notched Bar Impact Testing of Metallic Materials”, E23-86 (ASTM Philadelphia, PA, 1986).

    Google Scholar 

  51. D. E. Diesburg, in “Toughness Characterisation and Specification for HSLA and Structural Steels”, edited by P. L. Margonon (American Institute of Mineral Engineers, New York, 1979) p. 19.

    Google Scholar 

  52. N. Lazaridis and P. L. Margonon Jr, in “Proceedings of Toughness Characterization and Specifications for HSLA and Structural Steels”, Atlanta, GA, March 6–10, 1977, edited by P. L. Margonon Jr (TMS-AIME, Atlanta, Georgia 1979) p. 112.

    Google Scholar 

  53. J. C. Radon and C. E. Turner, J. Iron Steel Inst. 204 (1966) 842.

    CAS  Google Scholar 

  54. R. H. Sailors and H. T. Corten, in “Fracture Toughness”, Proceedings of the 1971 National Symposium on Fracture Mechanics, Part II, ASTM STP 514 (American Society for Testing and Materials, Philadelphia, PA, 1972) p. 164.

    Book  Google Scholar 

  55. R. J. Klassen, M. N. Bassim and M. R. Bayoumi, Mater. Sci. Eng. 80 (1986) 25.

    Article  CAS  Google Scholar 

  56. G. T. Hahn and A. R. Rosenfield, Metall. Trans. 6A (1975) 653.

    Article  CAS  Google Scholar 

  57. W. M. Garrison Jr and N. R. Mody, ibid. 18A (1987) 1257.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, K.K., Chakraborty, D. & Ray, S. Toughness characterization of niobium-bearing HSLA steels. JOURNAL OF MATERIALS SCIENCE 29, 921–928 (1994). https://doi.org/10.1007/BF00351410

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351410

Keywords

Navigation