Skip to main content
Log in

Succession and growth limitation of phytoplankton in the Gulf of Bothnia (Baltic Sea)

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

A one year field study of four stations in the Gulf of Bothnia during 1991 showed that the biomass was ca. two times, and primary productivity ca. four times, lower in the north (Bothnian Bay) than in the south (Bothnian Sea) during the summer. Nutrient addition experiments indicated phosphorus limitation of phytoplankton in the Bothanian Bay and the coastal areas in the northern Bothnian Sea, but nitrogen limitation in the open Bothanian Sea. A positive correlation between the phosphate concentration and the production/biomass ratio of phytoplankton was demonstrated, which partly explained the differences in the specific growth rate of the phytoplankton during the summer. Differences in photosynthetic active radiation between the stations also showed a covariation with the primary productivity. The relative importance of nutrient or light limitation for photosynthetic carbon fixation could not, however, the conclusively determined from this study. Marked differences in phytoplankton species composition from north to south were also observed. The number of dominating species was higher in the Bothnian Sea than in the Bothnian Bay. The distribution of some species could be explained as due to nutrient availability (e.g. Nodularia spumigena, Aphanizomenon sp.), while salinity probably limits the distribution of some limnic as well as marine species. The potentially toxic phytoplankton N. spumigena, Dinophysis acuminata and Chrysochromulina spp. were common in the Bothnian Sea but not in the Bothnian Bay. The pico- and nanoplankton biomass during late summer was higher than previously reported due to a revised carbon/volume ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alasaarela E (1979) Ecology of phytoplankton in the north of the Bothnian Bay. Acta bot fenn 110: 63–70

    Google Scholar 

  • Andersson A, Haecky P, Hagström Å (1994) Effect of light and temperature on the growth of micro-, nano- and picoplankton. Impact on algal succession. Mar Biol 120: 511–520

    Google Scholar 

  • Andersson A, Rudehäll Å (1993) Proportion of plankton biomass in particulate organic carbon in the northern Baltic Sea. Mar Ecol Prog Ser 95: 133–139

    Google Scholar 

  • Edler L (1979) Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. The Baltic Marine Biolgists. Publ No. 5. Gotab, Malmö

    Google Scholar 

  • Forsgren G, Jansson M (1992) The turnover of river-transported iron, phosphorus and organic carbon in the Öre Estuary, northern Sweden. Hydrobiologia 235/236: 585–596

    Google Scholar 

  • Forsgren G, Jansson M (1993) Sedimentation of phosphorus in limnetic and estuarine environments in the River Öre system, northern Sweden. Hydrobiologia 253: 233–248

    Google Scholar 

  • Gargas E (1975) A manual for phytoplankton primary production studies in the Baltic. Baltic Marine Biologists. Publ. No. 2. Water Quality Institute, Horsholm, Denmark

    Google Scholar 

  • Grane'li E, Wallström K, Larsson U, Graneli W, Elmgren R (1990) Nutrient limitation of primary production in the Baltic Sea area. Ambio 19: 142–151

    Google Scholar 

  • Grasshoff K, Ehrhardt M, Kremling K (1983) Methods of seawater analysis. (2nd edn) Verlag Chemie, Weinheim

    Google Scholar 

  • Hajdu S, Wille'n T (1985) Development of phytoplankton in the Gulf of Bothnia during May 1979–1984. The Swedish Marine Association, Annual Raport. SMHI Press, Norrköping (in Swedish)

    Google Scholar 

  • Hecky RF, Kilham P (1988) Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnol Oceanogr 33: 796–822

    Google Scholar 

  • Huttunen M, Kononen K, Leppänen J-M, Wille'n T (1986) Phytoplankton of the open sea areas of the Gulf of Bothnia — observations of the first stage of the Baltic Monitoring Programme in 1979–1983. Publ. No. 68 of the Water Research Institute, Helsinki, pp 139–144

  • Hällfors G, Niemi A, Ackefors H, Lassig J, Leppäkoski E (1981) Biological oceanography. I. Voipio A (ed) The Baltic Sea. Elsevier Oceanogr Ser 30: 219–274

  • Janson S, Carpenter EJ, Bergman B (1994) Fine structure and immunopocalisation of proteins in Aphanizomenon sp. from the Baltic Sea. Eur J Phycol 29: 203–211

    Google Scholar 

  • Jerlov NG (1968) Optical oceanography. Elsevier Oceanography Series, No. 5. Elsevier, Amsterdam

    Google Scholar 

  • Jones HLJ, Leadbeater BSC, Green JC (1994) Mixotrophy in haptophytes. In: Green JC, Leadbeater BSC (eds) The haptophyte algae. Systenatics Association, Special Volume No. 51. Clarendon Press, Oxford, pp 247–263

    Google Scholar 

  • Kangas P, Alasaarela E, Lax H-G, Jokela S, Storgård-Envall C (1993) Seasonal variation of primary production and nutrient concentrations in the coastal waters of the Bothnian Bay and the Quark. Aqua fenn 23: 165–176

    Google Scholar 

  • Karlsson K-G (1993) Climate overview. Gulf of Bothnia 1993. Environmental report No. 1. Umeå Marine Sciences Center, Umeå (in Swedish)

    Google Scholar 

  • Kivi K, Kaitata S, Kuosa H, Kuparinen J, Leskinen E, Lignell R, Mareussen B, Tamminer T (1993) Nutrient limitation and grazing control of the Baltic plankton community during annual succession. Limaol Oceanogr 38: 893–905

    Google Scholar 

  • Kononen K (1988) Phytoplankton summer assemblages in relation to environmental factors at the entrance of the Gulf of Finland during 1972–1985. Kieler Meeresforsch 6 (Sdhft): 281–294

    Google Scholar 

  • Kanonen K, Lahdes EO, Grönlund L (1993) Physiological and community responses of summer plankton to nutrient manipniation in the Gulf of Finland (Baltic Sea) with special reference to phosphorus. Sarsia 78: 243–253

    Google Scholar 

  • Krom MD, Kress N, Brenner S (1991) Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. Limnol Oceanogr 36: 424–432

    Google Scholar 

  • Kuosa H (1988) Observations on the taxonomy and ecology of Monoraphidium (Chlorophyceae, Chlorococcales) and Koliella (Chlorophyceae, Ulotrichales) species in the Tvärminne Sea area, SW coast of Finland. Arch Protistenk 135: 45–53

    Google Scholar 

  • Kuparinen J, Leonardsson K, Mattila J, Wikner J (1996) Food web structure and function in the Gulf of Bothnia, the Baltic Sea. Ambio (in press)

  • Larsson U, Hagström Å (1982) Fractionated phytoplankton primary production, exudate release and bacterial production in a Baltic cutrophication gradient. Mar Biol 67: 57–70

    Google Scholar 

  • Montagnes DJS, Beges JA, Harrison PJ, Taylor FJR (1994) Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol Oceanogr 39: 1044–1060

    Google Scholar 

  • Pankow H (1990) Ostsee — Algenflora, Gustav Fisher Verlag, Jena

    Google Scholar 

  • Sakshaug E, Holm-Hansen O (1986) Photoadaptation in Antarctic phytoplankton: variation in growth rate, chemical composition and P versus I curves. J Plankton Res 8: 459–473

    Google Scholar 

  • Smith SV, Kimmerer WJ, Walsh TW (1986) Vertical flux and biogeochemical turnover regulate nutrient limitation of net organic production in the North Pacific Gyre. Limnol Oceanogr 31: 161–167

    Google Scholar 

  • Sterner RW, Elser JJ, Hessen DO (1992) Stoichiometric relationship among producers, consumers and nutrient cycling in pelagic ecosystems. Biogeochemistry (Dordrecht) 17: 49–67

    Google Scholar 

  • Strathmann R (1967) Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol Oceanogr 12: 411–418

    Google Scholar 

  • Tikkanen T, Wille'n T (1992) Phytoplankton flora. The Swedish Environmental Protection Ageney, Solna (in Swedish)

    Google Scholar 

  • Valiela I (1984) Marine ecological processes. Springer Verlag, New York

    Google Scholar 

  • Verity PG, Robertson CY, Tronzo CR, Andrews MG, Nelson JR, Sieracki ME (1992) Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol Oceanogr 37: 1434–1446

    Google Scholar 

  • Wallström K, Johansson S, Larsson U (1992) Effects of nutrient enrichment on planktonic blue-green algae in the Baltic Sea. Acta phytogeogr suec 78: 25–31

    Google Scholar 

  • Wintermans JFGM, Demots A (1965) Spectrophotometric characteristics of chlorophylls a and b and their phaephytins in ethanol. Biochim Biophys Acta 109: 448–453

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by: L. Hagerman, Helsingør

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, A., Hajdu, S., Haecky, P. et al. Succession and growth limitation of phytoplankton in the Gulf of Bothnia (Baltic Sea). Marine Biology 126, 791–801 (1996). https://doi.org/10.1007/BF00351346

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351346

Keywords

Navigation