Skip to main content
Log in

Effect of interphase modulus and cohesive energy on the critical aspect ratio in short-fibre composites

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of interphase modulus and cohesive energy on critical fibre length in short-fibre reinforced brittle composites has been investigated employing computer simulation. The simulation consists of a two-dimensional computer model based upon a discrete network of grid points. Failure is defined in terms of an energy criterion, where the energy is calculated on the basis of a two- and three-body interaction between the grid points. Simulation results show that for a whisker-type fibre, a thick interphase (i.e. A i>Af where A represents the cross sectional area) with an elastic modulus less than that of the matrix in combination with an increased interphase toughness greatly reduce the critical aspect ratio, for both metal-matrix and ceramic-reinforced brittle polymer composites. The results also show a variation in the failure mode from tensile failure in the matrix to tensile and shear failure in the interphase as a function of the fibre-interphase modulus ratio. In particular, a significant increase in the load transfer efficiency in metal-matrix composites is found, for an interphase modulus E i less than the matrix modulus E m. Better load transfer properties in metal-matrix composites cause the yield point to occur at higher values of applied strain, and hence may significantly increase the toughness (area under the stress-strain curve) for certain metal-matrix composites. The computer results are compared with the predictions of Cox's shear-lag theory as well as with a new theoretical development presented in this work. The new theory is found to provide a better description of the fibre and matrix stress distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Piggott, in “Load Bearing Fibre Composites” (Pergamon, Oxford, 1980).

    Google Scholar 

  2. M. J. Owen, in “Fracture and Fatigue”, edited by L. J. Broutman (Academic, New York, 1974) p. 341.

    Google Scholar 

  3. J.-H. Kim and Y.-W. Mai, Compos. Sci. Tech. 41 (1991) 333.

    Google Scholar 

  4. E. Mäder and K. H. Freitag, Composites 21 (1990) 397.

    Google Scholar 

  5. J. P. Favre and J. Perrin, J. Mater. Sci. 7 (1972) 1113.

    Google Scholar 

  6. J. P. Favre and M. C. Merriene, Int. J. Adhesion Adhesives 1 (1981) 311.

    Google Scholar 

  7. L. Ongchin, W. K. Olender and F. H. Ancker, in 27 Ann. Tech. Comp. SPI, Section 11A (1972) 27.

    Google Scholar 

  8. V. Rao and L. T. Drzal, Polym. Compos. 12 (1) (1991) 48.

    Google Scholar 

  9. B. Miller, P. Muri and L. Rebenfeld, Compos. Sci. Tech. 28 (1987) 17.

    Google Scholar 

  10. J. F. Mandell, D. H. Grande, T.-H. Tsiang and F. J. McGarry, in Proceedings of 7th International Conference on Composite Materials (American Society for Testing and Materials, Philadelphia, 1986) p. 87.

    Google Scholar 

  11. H. C. Tsai, A. M. Arocho and L. W. Gause, Mater. Sci. Engng A126 (1990) 295.

    Google Scholar 

  12. M. K. Tse, SAMPE J. 21 (5) (1985) 11.

    Google Scholar 

  13. P. Herrera-Franco, W.-L. Wu, M. Madhukar and L. T. Drzal, in Proceedings of 46th Annual Conference of Composites Institute (Society of the Plastics Industry, 1991) p. 18.

  14. M. R. Piggott, in Proceedings of 36th International SAMPE Symposium (1991) p. 1773.

  15. I. Verpoaest, M. Desaeger and R. Keunings, in “Controlled Interphases in Composite Materials”, Proceedings of 3rd International Conference on Composite Interfaces (ICCI-III), edited by Hatsuo Ishida (Cleveland, Ohio, 1990) p. 653.

  16. M. R. Piggott, Compos. Sci. Tech. 30 (1987) 295.

    Google Scholar 

  17. T. F. Cooke, J. Polym. Engng 7 (1987) 197.

    Google Scholar 

  18. G. J. Spies, J. Aircraft Eng. 25 (1953) 64.

    Google Scholar 

  19. J. J. Bikerman, J. Appl. Phys. 28 (1957) 1484.

    Google Scholar 

  20. N. Aravas, K. S. Kim and M. J. Loukis, Mat. Sci. Engng A107 (1989) 159.

    Google Scholar 

  21. K. S. Kim and N. Aravas, Int. J. Solid Struct. 24 (1988) 417.

    Google Scholar 

  22. K. Kendall, J. Adhesion 5 (1973) 105.

    Google Scholar 

  23. M. Nardin and J. Schultz, C. R. Acad. Sci. Paris, 311 (II) (1990) 613.

    Google Scholar 

  24. E. M. Asloun, M. Nardin and J. Schultz, J. Mater. Sci. 24 (1989) 1835.

    Google Scholar 

  25. H. L. Cox, Br. J. Appl. Phys. 3 (1952) 72.

    Google Scholar 

  26. K. Kendall, J. Mater Sci. 10 (1975) 1011.

    Google Scholar 

  27. B. W. Rosen, in “Fibre Composite Materials” (American Society for Metals, Ohio, 1965).

    Google Scholar 

  28. N. F. Dow, Report TIS R635D61 (General Electric Co.,1963).

  29. W. Rosen, AIAA J. 2 (1964) 1985.

    Google Scholar 

  30. A. Kelly and G. J. Davies, Metall. Rev. 10 (37)(1965).

  31. W. R. Tyson and G. J. Davies, Br. J. Appl. Phys. 16 (1965) 199.

    Google Scholar 

  32. M. R. Piggott, Acta Metall. 14 (1966) 1429.

    Google Scholar 

  33. H. D. Wagner and A. Eitan, Appl. Phys. Lett. 56 (1990) 1965.

    Google Scholar 

  34. N. C. Remedios and W. G. Wood, J. Compos. Mater. 2 (1968) 517.

    Google Scholar 

  35. A. S. Carraron and F. J. McGarry, 2 (1968) 222.

    Google Scholar 

  36. J. Harner and N. Ashbaugh, Technical Report USAAVLABS-TR-67-66, AD-66790 (Wittaker Corporation, 1968).

  37. G. C. Shih and L. J. Ebert, J. Compos. Mater. 21 (1987) 207.

    Google Scholar 

  38. Y. Termonia, J. Mater. Sci. 25 (1990) 103.

    Google Scholar 

  39. P. S. Theorcaris, J. Appl. Polym. Sci. 30 (1985) 621.

    Google Scholar 

  40. , “The Mesophase Concept in Composites” (Springer, New York, 1987).

    Google Scholar 

  41. M. Narkis, E. J. H. Chen and R. B. Pipes, Polym. Compos. 9 (1988) 245.

    Google Scholar 

  42. L. Monette, M. P. Anderson, S. Ling and G. S. Grest, J. Mater. Sci. 27 (1992) 4393.

    Google Scholar 

  43. D. Hull, in “An Introduction to Composite Materials” (Cambridge University Press, Cambridge, 1981).

    Google Scholar 

  44. D. M. Schuster and E. Scala, Trans. Met. Soc. AIME 230 (1965) 1491.

    Google Scholar 

  45. P. S. Theorcaris and G. C. Papanicolaou, Fibre Sci. Technol. (1979) 421.

  46. S. K. Chaturvedi and G. Y. Tzeng, Compos. Engng 1 (1991) 49.

    Google Scholar 

  47. R. B. Clough, F. S. Biancaniello, H. N. G. Wadley and U. R. Kattner, Met. Trans. 21A (1990) 2747.

    Google Scholar 

  48. A. Lustiger and D. Wagner, Private communication 8 (1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monette, L., Anderson, M.P. & Grest, G.S. Effect of interphase modulus and cohesive energy on the critical aspect ratio in short-fibre composites. JOURNAL OF MATERIALS SCIENCE 28, 79–99 (1993). https://doi.org/10.1007/BF00349037

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00349037

Keywords

Navigation