Skip to main content
Log in

Environmental applications of mercury resistant bacteria

  • Published:
Water Air & Soil Pollution Aims and scope Submit manuscript

Abstract

Bacteria are resistant to Hg compounds by virtue of two specific enzymes: mercuric reductase and organomercurial lyase. We investigate these specific enzyme systems 1) to determine McHg in biological samples by its enzymatic transformation to the respective hydrocarbon and 2) as an environmental index of Hg pollution in geothermal areas, by studying the distribution of the percentage of Hg-resistant bacteria.

The first application is based on the enzymatic conversion of McHg to CH4. by whole cells of the Pseudomonas putida strain FBI. A 1 ml aliquot of 0.01N aqueous solution of thiosulphate containing MeHg, extracted from a biological sample by a conventional procedure was mixed with a dense (1 mg cells/mL dw) culture of FBI strain in a microreaction vessel. After a suitable period of incubation (from 4 to 18 hours), methane was assayed in the headspace by gas chromatograph equipped with flame ionization detector.

In the second application, Hg-resistant bacteria (MRB) isolated from mosses collected in a geothermal area (Travale) in Tuscany showed almost the same distribution pattern as total Hg in briophytes. Mosses and MRB are both suitable bioindicators for mapping contaminated areas. The finding of Hg-resistant strains depends on the availability of the metal for cell accumulation and interaction at molecular level in the cytoplasm to produce mercuric reductase. MRB/g dw is therefore an indirect measure of the enzyme in this terrestrial geothermal environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, F.K., and Treshow M.: 1984 In Air Pollut. Plant Life, Ed. Treshow, M. John Wiley & Sons Ltd pp.259.

  • Baldi, F., Olson, G.J., and Brinckman, F.E.: 1985. Geomicrobiol. J., 5, Geomicrobiol. J., 5, 1.

    Article  Google Scholar 

  • Baldi, F.: 1987. Water,Soil Air Pollut. 38, 111.

    Google Scholar 

  • Baldi, F., Coratza, G., Manganelli, R., and Pozzi, G.: 1988a. Microbios 54, 7

    CAS  Google Scholar 

  • Baldi, F., E. Cozzani, and M. Filippelli: 1988b. Environ. Sci.Technol. 22, 836

    Article  CAS  Google Scholar 

  • Baldi, F., Filippelli, M. and Olson, G.J., 1989: Microbiol. Ecol. 17, 263.

    Article  CAS  Google Scholar 

  • Baldi, F and Filippelli, M.: 1990. Env.Sci.Technol. (in press).

  • Baldi, F., Boudou, A., and Ribeyre: Water Res. (submitted).

  • Barkay, T., Fouts, D.L., Olson, B.H.,:1985. Appl. Environ. Microbiol., 49, 686

    CAS  Google Scholar 

  • Barkay, T., and Olson, B.H.: 1986, Appl.Environ.Microbiol. 52,403.

    CAS  Google Scholar 

  • Barkay, T.: 1987, Appl.Environ.Microbiol., 53, 2725.

    CAS  Google Scholar 

  • Barkay, T., Liebert, C., and Gillman, M.: 1990 Appl. Environ. Microbiol. 56,1695

    CAS  Google Scholar 

  • Barrineau, P., Gilbert, P., Jackson, W.J., Jones,C.S., Summers, A.O., and Wisdom, S.:1984. J. Mol. Appl. Genet. 2, 601.

    CAS  Google Scholar 

  • Bennett, P. M., Grinsted, J.,Choi,C.-L., and Richmond, M. H: 1978. Mol. Gen. Genet., 159, 101.

    Article  CAS  Google Scholar 

  • Booth, J. I, and Williams, J.W.: 1984, J.General Microbiol. 130, 725.

    CAS  Google Scholar 

  • Brown N. L.: 1985, Trends Biochem.Sci.,41,400.

    Article  Google Scholar 

  • Filippelli, M.:1986., Anal. Chem., 59,116.

    Article  Google Scholar 

  • Furukawa, K. Suzuki, T., and Tonomura, K.:1969, Agric.Biol.Chem., 33,128.

    CAS  Google Scholar 

  • Furukawa,K. and Tonomura,K.:1972, Agric.Biol. Chem., 36, 217.

    CAS  Google Scholar 

  • Hansen, C.L., Zwolinski, Martin, D., and Williams, J.W.: 1984, Biotechnol. Bioengineering, 26,1330.

    Article  CAS  Google Scholar 

  • Moore, B.:1960,.Lancet, 2: 453.

    Article  CAS  Google Scholar 

  • Nakamura, K. Fujisaki, T., and Tamashiro, H.: 1986. Environ. Res. 40, 58.

    Article  CAS  Google Scholar 

  • Nelson,J. D., and Colwell, R. R.:1975, Microbial. Ecol. 1,191.

    Article  CAS  Google Scholar 

  • Novick, R. T. and Roth, C., 1968, J. Bacteriol. 95,1335.

    CAS  Google Scholar 

  • Ogawa, H. I., Tolle, C. L., Summers, A.O.:1984, Gene 32, 311.

    Article  CAS  Google Scholar 

  • Porter, F. D., Silver, S., Ong, C., and Nakamara, H.:1982, Antimicrob.Agents Chemother. 22, 852.

    CAS  Google Scholar 

  • Rasmussen,L.:1977, Environ.Pollut.,14, 37.

    CAS  Google Scholar 

  • Report No. 26. 1985. International Atomic Agency, Laboratory of Marine Radioactivity, Oceanographic Museum; Monaco-Montecarlo, October 1985.

  • Robinson,J. B., and Tuovinen,O.H.:1984. Microbial Rev. 48,95.

    CAS  Google Scholar 

  • Stoeppler, M., and Backhaus, F.:1978. Fresenius Z. Anal. Chem., 291, 116.

    Article  CAS  Google Scholar 

  • Tezuka,T. and Tonomura, K.:1976, J. Biochem.(Tokio) 80, 79.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldi, F., Semplici, F. & Filippelli, M. Environmental applications of mercury resistant bacteria. Water, Air, and Soil Pollution 56, 465–475 (1991). https://doi.org/10.1007/BF00342292

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00342292

Keywords

Navigation