Skip to main content
Log in

Factors affecting petite induction and the recovery of respiratory competence in yeast cells exposed to ethidium bromide

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

When growing cultures of S. cerevisiae are treated with high concentrations of ethidium bromide (>50 μg/ml), three phases of petite induction may be observed: I. the majority of cells are rapidly converted to petite, II. subsequently a large proportion of cells recover the ability to form respiratory competent clones, and III. slow, irreversible conversion of all cells to petite. The extent of recovery of respiratory competence observed is dependent on the strain of S. cerevisiae employed and the temperature and the carbon source used in the growth medium. The effects of 100 μg/ml ethidium bromide are also produced by 10 μg/ml ethidium bromide in the presence of the detergent, sodium dodecyl sulphate, and recovery is also observed when cells are treated with 10 μg/ml ethidium bromide under starvation conditions. Genetic analysis of strain differences indicates that a number of nuclear genes influence petite induction by ethidium bromide.

In one strain, S288C, petite induction by 100 μg/ml ethidium bromide is extremely slow under certain conditions. Mitochondria isolated from S288C lack the ethidium bromide stimulated nuclease activity found in D243-4A, a strain which shows triphasic kinetics of petite formation. This enzyme may, therefore, be responsible for the initial phase of rapid petite formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bastos, R.N., Mahler, H.R.: Molecular mechanisms of mitochondrial genetic activity. Effects of ethidium bromide on the deoxyribonucleic acid and energetics of isolated mitochondria. J. biol. Chem. 249, 6617–6627 (1974)

    Google Scholar 

  • Criddle, R.S., Schatz, G.: Promitochondria of anaerobically grown yeast. I. Isolation and biochemical properties. Biochemistry 8, 322–334 (1969)

    Google Scholar 

  • Criddle, R.S., Wheelis, L., Trembath, M.K., Linnane, A.W.: Molecular and genetic events accompanying petite induction and recovery of respiratory competence induced by ethidium bromide. Molec. gen. Genet. 144, 265–274 (1976)

    Google Scholar 

  • Ephrussi, B., Hottinguer, H.: Direct demonstration of the mutagenic action of euflavine on baker's yeast. Nature (Lond.) 166, 956 (1950)

    Google Scholar 

  • Goldring, E.S., Grossman, L.I., Krupnick, D., Cryer, D.R., Marmur, J.: The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J. molec. Biol. 52, 323–335 (1970)

    Google Scholar 

  • Goldring, E.S., Grossman, L.I., Marmur, J.: Petite mutation in Yeast II. Isolation of mutants containing mitochondrial deoxyribonucleic acid of reduced size. J. Bact. 107, 377–381 (1971)

    Google Scholar 

  • Howell, N., Trembath, M.K., Linnane, A.W., Lukins, H.B.: Biogenesis of mitochondria. 30. An analysis of polarity of mitochondrial gene recombination and transmission. Mol. gen. Genet. 122, 37–51 (1973)

    Google Scholar 

  • Linnane, A.W., Kellerman, G.M., Lukins, H.B.: In: Techniques of biochemical and biophysical morphology (Glick, D. and Rosenbaum, R. eds.), vol. 2, p. 1–98. New York: John Wiley and Sons Inc. 1975

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  • Mahler, H.R.: Biogenetic autonomy of mitochondria. C.R.C. Crit. Rev. Biochem. 1, 381–460 (1973a)

    Google Scholar 

  • Mahler, H.R.: Genetic autonomy of mitochondrial DNA. In: Molecular cytogenetics (eds. B.A. Hamkalo and J. Papaconstantinou), p. 181–208. New York: Plenum Press 1973b

    Google Scholar 

  • Mahler, H.R., Bastos, R.N.: A novel reaction of mitochondrial DNA with ethidium bromide. FEBS Letters 39, 643–646 (1974a)

    Google Scholar 

  • Mahler, H.R., Bastos, R.N.: Coupling between mitochondrial mutation and energy transduction. Proc. nat. Acad. Sci. (Wash.) 71, 2241–2245 (1974b)

    Google Scholar 

  • Mahler, H.R., Perlman, P.S.: Mitochondrial membranes and mutagenesis by ethidium bromide. J. Supramol. Structure 1, 105–124 (1972)

    Google Scholar 

  • Mahler, H.R., Perlman, P.S.: Induction of respiratory deficient mutants in Saccharomyces cerevisiae by berenil. I. Berenil, a novel, non-intercalating mutagen. Molec. gen. Genet. 121, 285–294 (1973)

    Google Scholar 

  • Michaelis, G., Douglass, S., Tsai, M.J., Criddle, R.S.: Mitochondrial DNA and suppressiveness of petite mutants in Saccharomyces cerevisiae. Biochem. Genet. 5, 487–495 (1971)

    Google Scholar 

  • Nagley, P., Linnane, A.W.: Mitochondrial DNA deficient petite mutants of yeast. Biochem. biophys. Res. Commun. 39, 989–996 (1970)

    Google Scholar 

  • Nagley, P., Linnane, A.W.: Biogenesis of mitochondria XXI. Studies on the nature of the mitochondrial genome in yeast: The degenerative effects of ethidium bromide on mitochondrial genetic information in a respiratory competent strain. J. molec. Biol. 66, 181–193 (1972)

    Google Scholar 

  • Nagley, P., Mattick, J.S., Hall, R.M., Linnane, A.W.: Biogenesis of mitochondria. 43. A comparative study of petite induction and inhibition of mitochondrial DNA replication in yeast by ethidium bromide and berenil. Molec. gen. Genet. 141, 291–304 (1975)

    Google Scholar 

  • Paoletti, C., Couder, H., Guerineau, M.: A yeast mitochondrial deoxyribonuclease stimulated by ethidium bromide. Biochem. biophys. Res. Commun. 48, 950–958 (1972)

    Google Scholar 

  • Perlman, P.S., Mahler, H.R.: A premutational state induced in yeast by ethidium bromide. Biochem. biophys. Res. Commun. 44, 261–267 (1971)

    Google Scholar 

  • Slonimski, P.P., Perrodin, G., Croft, J.H.: Ethidium bromide induced mutation of yeast mitochondria: Complete transformation of cells into respiratory deficient non-chromosomal petities. Biochem. biophys. Res. Commun. 30, 232–239 (1968)

    Google Scholar 

  • Trembath, M.K., Lukins, H.B., Linnane, A.W.: The in vivo application of SDS to antibiotic resistant mutant selection and classification in Saccharomyces cerevisiae. (In preparation)

  • Wheelis, L., Trembath, M.K., Criddle, R.S.: Petite induction and recovery in the presence of high levels of ethidium bromide. Biochem. biophys. Res. Commun. 65, 838–845 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Gajewski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, R.M., Trembath, M.K., Linnane, A.W. et al. Factors affecting petite induction and the recovery of respiratory competence in yeast cells exposed to ethidium bromide. Molec. gen. Genet. 144, 253–262 (1976). https://doi.org/10.1007/BF00341723

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00341723

Keywords

Navigation