Skip to main content
Log in

In vitro studies on central and peripheral monoamine neurons at the ultrastructural level

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

Using ice-cold 3% potassium permanganate as a fixative (Richardson, 1966), isolated tissues from the central and peripheral nervous system were investigated in the electron microscope, with the object of identifying monoamine-containing neurons at the ultrastructural level. Thin brain slices and peripheral tissues from untreated rats and from rats treated with drugs interfering with monoamine metabolism (e.g. reserpine, H 44/68 or tetrabenazine) were incubated in physiological buffer solutions without and with monoamines in different concentrations. In certain cases, drugs interfering with monoamine metabolism (e.g. amphetamine, desipramine, cocaine or phenoxybenzamine) in different concentrations were added to the incubation medium.

The brain regions and peripheral tissues investigated were chosen on the basis of fluorescence-microscopical studies on the distribution of monoamine neurons (Fuxe, 1965c; Malmfors, 1965c; Norberg, 1965). In the brain, the caudate nucleus — which contains a dense plexus of dopamine (DA) nerve terminals — the periventricular region of the hypothalamus — which contains a dense plexus of noradrenaline (NA) nerve terminals — and the suprachiasmatic nucleus of the hypothalamus — which contains a dense plexus of 5-hydroxytryptamine (5-HT) nerve terminals — were investigated. The cerebral cortex and the nucleus ruber, which contain only a few or no monoamine nerve terminals were used as controls. The rat iris contains a dense plexus of NA nerve terminals.

In addition, brain regions and peripheral tissues containing monoamine nerve cell bodies were studied. However, since the incubation procedure seemed to cause marked morphological changes in the cell bodies, it was not, so far, possible to localize the monoamine storage sites in them.

Evidence was obtained that so-called small granular vesicles (diameter about 500 Å) are characteristic of central and peripheral monoamine neurons, and that these vesicles represent the main storage sites of the monoamines. The evidence is summarized as follows:

  1. 1.

    Incubation of slices from untreated rats without monoamines in the medium consistently revealed small granular vesicles only in regions known to contain NA nerve terminals.

  2. 2.

    Addition of monoamines to the incubation medium caused the appearance of small granular vesicles in boutons also in regions known to contain DA and 5-HT nerve terminals. However, even very high concentrations of monoamines in the medium did not cause the appearance of small granular vesicles in regions devoid of monoamine nerve terminals, e.g. in the nucleus ruber.

  3. 3.

    In slices from rats pretreated with drugs which deplete monoamine stores (e.g. reserpine and tetrabenazine), no small granular vesicles could be seen in any region studied.

  4. 4.

    Small granular vesicles reappeared after incubation of slices from rats pretreated with monoamine-depleting drugs in media containing monoamines in sufficiently high concentrations.

  5. 5.

    This reappearance could be prevented by adding to the incubation medium drugs, which are considered to block the uptake of amines through the nerve cell membrane (e.g. cocaine).

  6. 6.

    Quantitative analysis disclosed a good correlation in different brain regions between boutons containing small granular vesicles and monoamine-containing varicosities as revealed in the fluorescence microscope. About 16% of all boutons in the caudate nucleus, about 4% in the periventricular region, and about 5% in the suprachiasmatic nucleus contained small granular vesicles.

Furthermore, evidence was obtained that large granular vesicles present in the same boutons as the small granular vesicles may also contain monoamines. It has, however, to be pointed out that large granular and agranular vesicles in general in all probability also occur in non-monoaminergic neurons and that, thus, large granular vesicles cannot be considered specific for monoamine neurons (cf. Fuxe et al., 1965, 1966).

Typical axo-dendritic synapses of type I (Gray, 1961) were demonstrated in association with probable NA and 5-HT boutons. Probable DA and 5-HT boutons were also seen lying in contact with cell bodies, suggesting the existence of axo-somatic synapses.

The presence of small granular vesicles in boutons associated with synapses of type I gives further evidence for the view that monoamines are, in fact, transmitter substances in the central nervous system, since only small granular vesicles lie close to the synaptic cleft. Thus, small granular vesicles may be considered as equivalents of the synaptic vesicles (De Robertis and Bennett, 1954; Palade and Palay, 1954) thought to store and release preformed packets of transmitter substance, e.g. acetylcholine (Katz, 1962). Large granular vesicles, on the other hand, were almost always localized to parts of the boutons relatively far away from the synaptic cleft. This finding argues against the view that large granular vesicles are directly involved in the release of transmitter substance at the synaptic cleft.

Finally, the influence of the incubation medium on the fine structure of incubated tissues was studied, showing a marked swelling of the extracellular space and certain tissue components. These changes were, however, present only in the superficial parts of the tissue slices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghajanian, G. K., and F. E. Bloom: Electron-microscopic autoradiography of rat hypothalamus after intraventricular H3-norepinephrine. Science 153, 308–310 (1966a).

    Google Scholar 

  • —: Localization of tritiated serotonin in rat brain by electron-microscopic autoradiography. J. Pharmacol. exp. Ther. 156, 23–30 (1966b).

    Google Scholar 

  • —: Electron-microscopic localization of tritiated norepinephrine in rat brain. Effect of drugs. J. Pharmacol. exp. Ther. 156, 407–416 (1967).

    Google Scholar 

  • Aherne, W.: Methods of counting discrete tissue components in microscopical sections. J. roy. micr. Soc. 87, 493–508 (1967).

    Google Scholar 

  • Akert, K., K. Pfenninger, and C. Sandri: The fine structure of synapses in the subfornical organ of the cat. Z. Zellforsch. 81, 537–656 (1967).

    Google Scholar 

  • —, and C. Sandri: An electron-microscopic study of zinc iodide-osmium impregnation of neurons. I. Staining of synaptic vesicles at cholinergic junctions. Brain Res. 7, 286–295 (1968).

    Google Scholar 

  • Amin, A. H., T. B. B. Crawford, and H. J. Gaddum: The distribution of substance P and 5-hydroxytryptamine in the central nervous system of the dog. J. Physiol. (Lond.) 126, 596–618 (1954).

    Google Scholar 

  • Andén, N.-E.: On the mechanism of noradrenaline depletion by α-methyl-metatyrosine and metaraminol. Acta pharmacol. (Kbh.) 21, 260–271 (1964).

    Google Scholar 

  • —: Effects of reserpine and a tyrosine hydroxylase inhibitor on the monoamine levels in different regions of the rat central nervous system. Europ. J. Pharmacol. 1, 1–5 (1967).

    Google Scholar 

  • —, H. Corrodi, A. Dahlström, K. Fuxe, and T. Hökfelt: Effects of tyrosine hydroxylase inhibition on the amine levels of central monoamine neurons. Life Sci. 5, 561–568 (1966).

    Google Scholar 

  • —, M. Ettles, E. Gustafsson, and H. Persson: Selective uptake of some catecholamines by the isolated heart and its inhibition by cocaine and phenoxybenzamine. Acta pharmacol. (Kbh.) 21, 247–259 (1964).

    Google Scholar 

  • —, A. Dahlström, K. Fuxe, and K. Larsson: Mapping out of catecholamine and 5-hydroxy-tryptamine neurons innervating the telencephalon and diencephalon. Life Sci. 4, 1275–1279 (1965).

    Google Scholar 

  • —, K. Fuxe, K. Larsson, L. Olson, and U. Ungerstedt: Ascending monoamine neurons to the telencephalon and diencephalon. Acta physiol. scand. 67, 313–326 (1966a).

    Google Scholar 

  • —, K. Fuxe, B. Hamberger, and T. Hökfelt: A quantitative study on the nigro-neostriatal dopamine neuron system in rat. Acta physiol. scand. 67, 306–312 (1966b).

    Google Scholar 

  • —, and T. Hökfelt: Effects of some drugs on central monoamine nerve terminals lacking nerve impulse flow. Europ. J. Pharmacol. 1, 226–232 (1967).

    Google Scholar 

  • Axelrod, J.: Methylation reactions in the formation and metabolism of catecholamines and other biogenic amines. Pharmacol. Rev. 18, 95–114 (1966).

    Google Scholar 

  • —, E. Gordon, G. Hertting, I. J. Kopin, and L. T. Potter: On the mechanism of tachyphylaxis to tyramine in the isolated rat heart. Brit. J. Pharmacol. 19, 56–63 (1962a).

    Google Scholar 

  • —, G. Hertting, and R. W. Patrick: The physiological disposition of H3-epinephrine and its metabolite metanephrine. J. Pharmacol. exp. Ther. 127, 251–256 (1959).

    Google Scholar 

  • —, and L. T. Potter: Effect of drugs on the uptake and release of H3-norepinephrine in the rat heart. Nature (Lond.) 194, 297 (1962b).

    Google Scholar 

  • —, and R. Tomchick: Increased rate of metabolism of epinephrine and norepinephrine by sympathomimetic amines. J. Pharmacol. exp. Ther. 130, 367–369 (1960).

    Google Scholar 

  • —, L. G. Whitby, and G. Hertting: Effect of psychotropic drugs on the uptake of H3-norepinephrine by tissues. Science 133, 383–384 (1961).

    Google Scholar 

  • Bässler, R., and L. V. Habighorst: Vergleichende licht- und elektronenmikroskopische Untersuchungen am Nebennierenmark und Phäochromocytom. Beitr. path. Anat. 130, 445–488 (1964).

    Google Scholar 

  • Bahr, G. F., G. Bloom, and U. Friberg: Volume changes of tissues in physiological fluids during fixation in osmium tetroxide or formaldehyde and during subsequent treatment. Exp. Cell Res. 12, 342–355 (1957).

    Google Scholar 

  • Bak, I. J.: The ultrastructure of the substantia nigra and caudate nucleus of the mouse and the cellular localization of catecholamines. Exp. Brain Res. 3, 40–57 (1967).

    Google Scholar 

  • —, R. Hassler, B. May, and E. Westermann: Morphological and biochemical studies on the storage of serotonin and histamine in blood platelets of the rabbit. Life Sci. 6, 1133–1146 (1967).

    Google Scholar 

  • Berti, F., and P. A. Shore: A kinetic analysis of drugs that inhibit the adrenergic neuronal membrane amine pump. Biochem. Pharmacol. 16, 2091–2094 (1967).

    Google Scholar 

  • Bertler, Å., N.-Å. Hillarp, and E. Rosengren: “Bound” and “free” catecholamines in the brain. Acta physiol. scand. 50, 113–118 (1960).

    Google Scholar 

  • Billingsley, P. R., and S. W. Ransom: On the number of nerve cells in the ganglion cervicale superius and of the nerve fibres in the cephalic end of the truncus sympathicus in the cat and on the numerical relations of preganglionic and postganglionic neurons. J. comp. Neurol. 29, 359–366 (1918–1919).

    Google Scholar 

  • Bloom, F. E.: Localization of norepinephrine in dense-core vesicles. Neurosciences Res. Prog. Bull. 5, 11–17 (1967).

    Google Scholar 

  • —, and G. K. Aghajanian: An electron microscopic analysis of large granular synaptic vesicles of the brain in relation to monoamine content. J. Pharmacol. exp. Ther. 159, 261–273 (1968).

    Google Scholar 

  • —, and R. J. Barrnett: Fine structural localization of noradrenaline in vesicles of autonomic nerve endings. Nature (Lond.) 210, 599–601 (1966).

    Google Scholar 

  • Blümcke, S., u. H. R. Niedorf: Fluoreszenzmikroskopische und elektronenmikroskopische Untersuchungen an regenerierenden adrenergischen Nervenfasern. Z. Zellforsch. 68, 724–732 (1965).

    Google Scholar 

  • Bogdanski, D. F., A. Pletscher, B. B. Brodie, and S. Udenfriend: Identification and assay of serotonin in brain. J. Pharmacol. exp. Ther. 117, 82–88 (1956).

    Google Scholar 

  • Bondareff, W.: Submicroscopic morphology of granular vesicles in sympathetic nerves of rat pineal body. Z. Zellforsch. 67, 211–218 (1965).

    Google Scholar 

  • —, and B. Gordon: Submicroscopic localization of norepinephrine in sympathetic nerves of rat pineal. J. Pharmacol. exp. Ther. 153, 42–47 (1966).

    Google Scholar 

  • Bowes, J. H., and C. W. Cater: The reaction of glutaraldehyde with proteins and other biological materials. J. roy. micr. Soc. 85, 193–200 (1965).

    Google Scholar 

  • Burton, R. M., and R. E. Howard: Gangliosides and acetylcholine of the central nervous system. VIII. Role of lipids in the binding and release of neurohormones by synaptic vesicles. Ann. N.Y. Acad. Sci. 144, 411–432 (1967).

    Google Scholar 

  • Carlsson, A.: Detection and assay of dopamine. Pharmacol. Rev. 11, 300–304 (1959).

    Google Scholar 

  • —: Physiological and pharmacological release of monoamines in the central nervous system. In: Mechanisms of release of biogenic amines (U.S. Von Euler, S. Rosell, and B. Uvnäs, eds.), vol. 5, p. 331–346. Oxford-London-Edinburgh-New York-Toronto-Paris-Braunschweig: Pergamon Press 1966a.

    Google Scholar 

  • —: Drugs, which block the storage of 5-hydroxytryptamine and related amines. In: Handbuch der experimentellen Pharmakologie (V. Erspamer, ed.), Ergänzungswerk, Bd. XIX, S. 529–592. Berlin-Heidelberg-New York: Springer 1966b.

    Google Scholar 

  • —: Pharmacological depletion of catecholamine stores. Pharmacol. Rev. 18, 541–550 (1966c).

    Google Scholar 

  • —, B. Falck, and N.-Å. Hillarp: Cellular localization of brain monoamines. Acta physiol. scand. 56, Suppl. 196, 1–27 (1962a).

    Google Scholar 

  • —, N.-Å. Hillarp, and A. Torp: Histochemical localization at the cellular level of hypothalamic noradrenaline. Acta physiol. scand. 54, 385–386 (1962b).

    Google Scholar 

  • —, K. Fuxe, B. Hamberger, and M. Lindqvist: Biochemical and histochemical studies on the effects of imipramine-like drugs and (+)-amphetamine on central and peripheral catecholamine neurons. Acta physiol. scand. 67, 481–497 (1966).

    Google Scholar 

  • —, N.-Å. Hillarp, and B. Waldeck: Analysis of the Mg++-ATP dependent storage mechanism in the amine granules of the adrenal medulla. Acta physiol. scand. 59, Suppl. 215, 1–38 (1963).

    Google Scholar 

  • —, and M. Lindqvist: In vivo decarboxylation of α-methyl-DOPA and α-methyl metatyrosine. Acta physiol. scand. 54, 87–94 (1962).

    Google Scholar 

  • —, and B. Waldeck: Mechanisms of amine transport in the cell membranes of adrenergic nerves. Acta pharmacol. (Kbh.) 22, 293–300 (1965).

    Google Scholar 

  • —: Effects of amphetamine, tyramine, and protriptyline on reserpine-resistant amineconcentrating mechanism of adrenergic nerves. J. Pharm. Pharmacol. 18, 252–259 (1966).

    Google Scholar 

  • Clementi, F.: Modifications ultrastructurelles provoqués par quelques médicaments sur les terminaisons nerveuses adrénergiques et sur la médullaire surrénale. Experientia (Basel) 21, 171–187 (1965).

    Google Scholar 

  • —, P. Mantegazza, and M. Botturi: A pharmacologic and morphologic study on the nature of the dense-core granules present in the presynaptic endings of sympathetic ganglia. Int. J. Neuropharmacol. 5, 281–285 (1966).

    Google Scholar 

  • Cohen, M. M., and J. F. Hartman: Biochemical and ultrastructural correlates of cerebral cortex slices metabolizing in vitro. In: Morphological and biochemical correlates of neural activity (M. M. Cohen and R. S. Snider, eds.), p. 57–74. New York: Harper & Row 1964.

    Google Scholar 

  • Corrodi, H., K. Fuxe, and T. Hökfelt: Refillment of the catecholamine stores with 3,4-dihydroxyphenylalanine after depletion induced by inhibition of tyrosinehydroxylase. Life Sci. 5, 605–611 (1966).

    Google Scholar 

  • —, and L. Hansson: Central effects of an inhibitor of tyrosine hydroxylation. Psychopharmacol. (Berl.) 10, 116–125 (1966).

    Google Scholar 

  • —, u. N.-Å. Hillarp: Fluoreszenzmethoden zur histochemischen Sichtbarmachung von Monoaminen. 1. Identifizierung der fluoreszierenden Produkte aus Modellversuchen mit 6,7-Dimethoxyisochinolinderivaten und Formaldehyd. Helv. chim. Acta 46, 2425–2430 (1963).

    Google Scholar 

  • —: Fluoreszenzmethoden zur histochemischen Sichtbarmachung von Monoaminen. 2. Identifizierung des fluoreszierenden Produktes aus Dopamin und Formaldehyd. Helv. chim. Acta 47, 911–918 (1964).

    Google Scholar 

  • —, and G. Jonsson: The formaldehyde fluorescence method for the histochemical demonstration of biogenic monoamines. A review on the methodology. J. Histochem. Cytochem. 15, 65–78 (1967).

    Google Scholar 

  • —, and T. Malmfors: The effect of nerve activity on the depletion of the adrenergic transmitter by inhibitors of noradrenaline synthesis. Acta physiol. scand. 67, 352–357 (1966).

    Google Scholar 

  • Coupland, R. E.: Electron microscopic observations on the structure of the rat adrenal medulla. II. Normal innervation. J. Anat. (Lond.) 99, 255–272 (1965).

    Google Scholar 

  • —, and D. Hopwood: The mechanism of the differential staining reaction for adrenaline- and noradrenaline-storing granules in tissues fixed in glutaraldehyde. J. Anat. (Lond.) 100, 227–243 (1966).

    Google Scholar 

  • —, A. S. Pyper, and D. Hopwood: A method for differentiating between noradrenaline — and adrenaline — storing cells in the light and electron microscope. Nature (Lond.) 201, 1240–1242 (1964).

    Google Scholar 

  • Dahlström, A.: The intraneuronal distribution of noradrenaline and the transport and lifespan of amine storage granules in the sympathetic adrenergic neuron. M.D. Thesis, Stockholm (1966).

  • —, and K. Fuxe: Evidence for the existence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta physiol. scand. 62, Suppl. 232, 1–55 (1964).

    Google Scholar 

  • —: Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta physiol. scand. 64, Suppl. 247, 1–36 (1965).

    Google Scholar 

  • —: Monoamines and the pituitary gland. Acta endocr. (Kbh.) 51, 301–314 (1966).

    Google Scholar 

  • —, and N.-Å. Hillarp: Site of action of reserpine. Acta pharmacol. (Kbh.) 22, 277–292 (1965).

    Google Scholar 

  • —, J. HÄggendal, and T. Hökfelt: The noradrenaline content of the varicosities of sympathetic adrenergic nerve terminals in the rat. Acta physiol. scand. 67, 289–294 (1966).

    Google Scholar 

  • Da Prada, M., A. Pletscher, J. P. Tranzer, and H. Knuchel: Subcellular localization of 5-hydroxytryptamine and histamine in blood platelets. Nature (Lond.) 216, 1315–1317 (1967).

    Google Scholar 

  • Dengler, H. J., I. A. Michaelson, H. E. Spiegel, and E. Titus: The uptake of labeled norepinephrine by isolated brain and other tissues of the cat. Int. J. Neuropharmacol. 1, 23–38 (1962).

    Google Scholar 

  • De Robertis, E., and H. S. Bennett: Submicroscopic vesicular component in the synapse. Fed. Proc. 13, 35 (1954).

    Google Scholar 

  • De Robertis, E., and A. Pellegrino De Iraldi: Plurivesicular secretory processes and nerve endings in the pineal gland. J. biophys. biochem. Cytol. 10, 361–372 (1961a).

    Google Scholar 

  • —: A plurivesioular component in adrenergic nerve endings. Anat. Rec. 139, 299 (1961b).

    Google Scholar 

  • —, G. Rodriguez de Lores Arnaiz, and L. M. Zieher: Synaptic vesicles from the rat hypothalamus. Life Sci. 4, 193–201 (1965).

    Google Scholar 

  • Devine, C. E.: Electron microscope autoradiography of rat arteriolar axons after noradrenaline infusion. Proc. Univ. Otago med. Sch. 45, 7–8 (1967).

    Google Scholar 

  • —, and F. O. Simpson: The effect of noradrenaline-depleting drugs on the granular vesicles of the axons around rat intestinal blood vessels. Proc. Univ. Otago med. Sch. 44, 54–56 (1966).

    Google Scholar 

  • Duncan, D., and R. Yates: Ultrastructure of the carotid body of the cat as revealed by various fixatives and the use of reserpine. Anat. Rec. 157, 667–681 (1967).

    Google Scholar 

  • Eccles, J. C.: The physiology of synapses. Berlin-Göttingen-Heidelberg: Springer 1964.

    Google Scholar 

  • Eccleston, D., N. B. Thoa, and J. Axelrod: Inhibition by drugs of the accumulation in vitro of 5-hydroxytryptamine in guinea-pig vas deferens. Nature (Lond.) 217, 846–847 (1968).

    Google Scholar 

  • Elfvin, L.-G.: The ultrastructure of the superior cervical sympathetic ganglion of the cat. I. The structure of the ganglion cell processes as studied by serial sections. J. Ultrastruct. Res. 8, 403–440 (1963a).

    Google Scholar 

  • —: The ultrastructure of the superior cervical sympathetic ganglion of the cat. II. The structure of the preganglionic end fibers and the synapses as studied by serial sections. J. Ultrastruct. Res. 8, 441–476 (1963b).

    Google Scholar 

  • Elliot, K. A. C.: Swelling of brain slices and the permeability of brain cells to glucose. Proc. Soc. exp. Biol. (N.Y.) 63, 234–236 (1946).

    Google Scholar 

  • Eränkö, O.: The histochemical demonstration of noradrenaline in the adrenal medulla of rats and mice. J. Histochem. Cytochem. 4, 11 (1955).

    Google Scholar 

  • Esterhuizen, A. C., J. D. P. Graham, J. D. Lever, and T. L. B. Spriggs: Catecholamine and acetylcholinesterase distribution in relation to noradrenaline release. An enzyme histochemical and autoradiographic study on the innervation of the nictitating muscle. Brit J. Pharmacol. 32, 46–56 (1968).

    Google Scholar 

  • Euler, U. S. Von: The presence of a substance with sympathin E properties in spleen extracts. Acta physiol. scand. 11, 168–186 (1946a).

    Google Scholar 

  • —: A specific sympathomimetic ergone in adrenergic nerve fibres (sympathin) and its relations to adrenaline and nor-adrenaline. Acta physiol. scand. 12, 73–97 (1946b).

    Google Scholar 

  • —: Identification of the sympathomimetic ergone in adrenergic nerves of cattle (sympathin N) with laevo-noradrenaline. Acta physiol. scand. 16, 63–74 (1948).

    Google Scholar 

  • —, and N.-Å. Hillarp: Evidence for the presence of noradrenaline in submicroscopic structures of adrenergic axons. Nature (Lond.) 177, 44–45 (1956).

    Google Scholar 

  • —, and F. Lishajko: Catecholamine release and uptake in isolated adrenergic nerve granules. Acta physiol. scand. 57, 468–480 (1963a).

    Google Scholar 

  • —: Effect of adenine nucleotides on catecholamine release and uptake in isolated adrenergic nerve granules. Acta physiol. scand. 59, 454–461 (1963b).

    Google Scholar 

  • —: Effect of drugs on the storage granules of adrenergic nerves. In: Pharmacology of cholinergic and adrenergic transmission (G. B. Koelle, W. W. Douglas, and A. Carlsson, eds.), vol.3, p. 245–259. Oxford-London-Edinburgh-New York-Paris-Frankfurt: Pergamon Press 1965.

    Google Scholar 

  • —: Inhibitory action of adrenergic blocking agents on catecholamine release and uptake in isolated nerve granules. Acta physiol. scand. 68, 257–262 (1966).

    Google Scholar 

  • —, and G. Swanbeck: Some morphological features of catecholamine storing nerve vesicles. Acta physiol. scand. 62, 487–488 (1964).

    Google Scholar 

  • Falck, B.: Observations on the possibilities of the cellular localization of monoamines by a fluorescence method. Acta physiol. scand. 56, Suppl. 197, 1–25 (1962).

    Google Scholar 

  • —, N.-Å. Hillarp, G. Thieme, and A. Torp: Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem. 10, 348–354 (1962).

    Google Scholar 

  • Farrell, K. E.: Fine structure of nerve fibres in smooth muscle of the vas deferens in normal and reserpinized rats. Nature (Lond.) 217, 279–281 (1968).

    Google Scholar 

  • Field, J.: Respiration of tissue slices. Meth. med. Res. 1, 289–307 (1948).

    Google Scholar 

  • Folkow, B., J. Häggendal, and B. Lisander: Extent of release and elimination of noradrenaline at peripheral adrenergic nerve terminals. Acta physiol. scand., Suppl. 307, 1–38 (1967).

    Google Scholar 

  • Forssmann, W. G.: Studien über den Feinbau des Ganglion cervicale superius der Ratte. I. Normale Struktur. Acta anat. (Basel) 59, 106–140 (1954).

    Google Scholar 

  • —, et Ch. Rouiller: L'Ultrastructure du ganglion cervical superieur du rat. II. Changements de l'ultrastructure, in vitro, pendant la perte de fonction. Z. Zellforsch. 70, 364–385 (1966).

    Google Scholar 

  • Fuxe, K.: Evidence for the existence of monoamine neurons in the central nervous system. III. The monoamine nerve terminal. Z. Zellforsch. 65, 573–596 (1965a).

    Google Scholar 

  • —: Evidence for the existence of monoamine neurons in the central nervous system. IV. The distribution of monoamine nerve terminals in the central nervous system. Acta physiol. scand. 64, Suppl. 247, 39–85 (1965b).

    Google Scholar 

  • - Evidence for the existence of central monoamine neurons. M.D. Thesis, Stockholm (1965c).

  • —, B. Hamberger, and T. Malmfors: The effect of drugs on accumulation of monoamines in tubero-infundibular dopamine neurons. Europ. J. Pharmacol. 1, 334–341 (1967).

    Google Scholar 

  • —, and N.-Å. Hillarp: Uptake of L-dopa and noradrenaline by central catecholamine neurons. Life Sci. 3, 1403–1406 (1964).

    Google Scholar 

  • —, T. Hökfelt, and O. Nilsson: Observations on the cellular localization of dopamine in the caudate nucleus of the rat. Z. Zellforsch. 63, 701–706 (1964).

    Google Scholar 

  • —: A fluorescence and electronmicroscopic study on certain brain regions rich in monoamine terminals. Amer. J. Anat. 117, 33–45 (1965).

    Google Scholar 

  • —, S. Reinius, and O. Nilsson: A fluorescence and electron microscopic study on central monoamine nerve cells. Anat. Rec. 155, 33–40 (1966).

    Google Scholar 

  • —, and U. Ungerstedt: Morphologic, pharmacologic and functional studies on 5-hydroxytryptamine neurons in the central nervous system of mammals. Advanc. Pharmacol. (E. Costa, ed.), vol. 6A, p. 235–251. New York and London: Academic Press 1968c.

    Google Scholar 

  • —, and G. Jonsson: A modification of the histochemical fluorescence method for the improved localization of 5-HT. Histochemie 11, 161–166 (1967).

    Google Scholar 

  • —, and U. Ungerstedt: Localization of catecholamine uptake in rat brain after intraventricular injection. Life Sci. 5, 1817–1824 (1966).

    Google Scholar 

  • —: Histochemical studies on the distribution of catecholamines and 5-hydroxytryptamine after intraventricular injections. Histochemie 13, 16–28 (1968a).

    Google Scholar 

  • - - Histochemical studies on the effect of (+)-amphetamine, drugs of the imipraminegroup and tryptamine on central catecholamine and 5-hydroxytryptamine neurons after intraventricular injection of catecholamines and 5-hydroxytryptamine. Europ. J. Pharmacol., in press (1968b).

  • Gerschenfeld, H. M., F. Wald, J. A. Zadunaisky, and E. De Robertis: Function of astroglia in the water ion metabolism of the central nervous system. Neurology 9, 412–425 (1959).

    Google Scholar 

  • Glowinski, J., J. Axelrod, and L. L. Iversen: Regional studies of catecholamines in the rat brain. IV. Effects of drugs on the disposition and metabolism of H3-norepinephrine and H3-dopamine. J. Pharmacol. exp. Ther. 153, 30–47 (1966).

    Google Scholar 

  • —, and R. J. Baldessarini: Metabolism of norepinephrine in the central nervous system. Pharmacol. Rev. 18, 1201–1238 (1966).

    Google Scholar 

  • —, I. J. Kopin, and J. Axelrod: Metabolism of 3H-norepinephrine in the rat brain. J. Neurochem. 12, 25–30 (1965).

    Google Scholar 

  • Gray, E. G.: Ultrastructure of synapses of the cerebral cortex and of certain specializations of the neuroglial membranes. In: Electron microscopy in anatomy (J. D. Boyd, F. R. Johnson, and J. D. Lever, eds.), p. 54–73. London: Edward Arnold 1961.

    Google Scholar 

  • Grillo, M.: Electron microscopy of sympathetic tissue. Pharmacol. Rev. 18, 387–399 (1966).

    Google Scholar 

  • —, and S. L. Palay: Granule-containing vesicles in the autonomic nervous system. In: Electron microscopy (S. S. Breese, Jr., ed.), vol. 2, p. U-1. New York: Academic Press 1962.

    Google Scholar 

  • Gutman, Y., and H. Weil-Malherbe: The intracellular distribution of brain catecholamines. J. Neurochem. 14, 619–625 (1967).

    Google Scholar 

  • Hager, H., u. W. L. Tafuri: Elektronenoptischer Nachweis sog. neurosekretorischer Elementargranula in marklosen Nervenfasern des Plexus myentericus (Auerbach) des Meerschweinchens. Naturwissenschaften 46, 332–333 (1959).

    Google Scholar 

  • Hake, T.: Studies on the reactions of OsO4 and KMnO4 with amino acids, peptides and proteins. Lab. Invest. 14, 1208–1212 (1965).

    Google Scholar 

  • Halaris, A., E. Ruther, and N. Matussek: Effect of a benzoquinolizine (Ro 4-1284) on granulated vesicles of the rat brain. Z. Zellforsch. 76, 100–107 (1967).

    Google Scholar 

  • Hamberger, B.: Reserpine-resistant uptake of catecholamines in isolated tissues of the rat. Acta physiol. scand. 295, 1–56 (1967).

    Google Scholar 

  • —, and T. Malmfors: Uptake and release of α-methyl-noradrenaline in vitro after reserpinepretreatment. Acta physiol. scand. 70, 412–418 (1967).

    Google Scholar 

  • —, and D. Masuoka: Localization of catecholamine uptake in rat brain slices. Acta pharmacol. (Kbh.) 22, 363–368 (1965).

    Google Scholar 

  • Harreveld, A. Van, and J. Crowell: Extracellular space in central nervous system. Fed. Proc. 23, 304 (1964).

    Google Scholar 

  • Hashimoto, Y., S. Ishii, Y. Ohi, N. Shimizu, and R. Imaizumi: Effect of dopa on the norepinephrine and dopamine contents and on the granulated vesicles of the hypothalamus of reserpinized rabbits. Jap. J. Pharmacol. 15, 395–400 (1965).

    Google Scholar 

  • Hertting, G., J. Axelrod, and L. G. Whitby: Effects of drugs on the uptake and metabolism of H3-norepinephrine. J. Pharmacol. exp. Ther. 134, 146–153 (1961).

    Google Scholar 

  • Hess, S. M., R. H. Connamacher, M. Ozaki, and S. Udenfriend: The effects of α-methyl-DOPA and α-methyl-metatyrosine on the metabolism of norepinephrine and serotonin in vivo. J. Pharmacol. (Kyoto) 134, 129–138 (1961).

    Google Scholar 

  • Hillarp, N.-Å.: Structure of the synapse and the peripheral innervation apparatus of the autonomic nervous system. Acta anat. (Basel) 2, Suppl. 4, 1–153 (1946).

    Google Scholar 

  • —: The construction and functional organization of the autonomic innervation apparatus. Acta physiol. scand. 46, 1–38 (1959).

    Google Scholar 

  • —, K. Fuxe, and A. Dahlström: Central monoamine neurons. In: Mechanisms on release of biogenic amines (U. S. V. Euler, S. Rosell, and B. Uvnäs, eds.), p. 31–37. Oxford-London-Edinburgh-New York-Toronto-Paris-Braunschweig: Pergamon Press 1966a.

    Google Scholar 

  • —: Demonstration and mapping out of central neurons containing dopamine, noradrenaline and 5-hydroxytryptamine and their reactions to psychopharmaca. Pharmacol. Rev. 18, 727–741 (1966b).

    Google Scholar 

  • —, and T. Malmfors: Reserpine and cocaine blocking of the uptake and storage mechanism in adrenergic nerves. Life Sci. 8, 703–708 (1964).

    Google Scholar 

  • Hirano, T., and C. C. Lindegren: Electron microscopy of mitochondrial changes in Saccharomyces. J. Ultrastruct. Res. 8, 322–326 (1963).

    Google Scholar 

  • Hökfelt, T.: A modification of the histochemical fluorescence method for the demonstration of catecholamines and 5-hydroxytryptamine, using araldite as embedding medium. J. Histochem. Cytochem. 13, 518–519 (1965).

    Google Scholar 

  • —: The effect of reserpine on the intraneuronal vesicles of the rat vas deferens. Experientia (Basel) 22, 56–57 (1966a).

    Google Scholar 

  • —: Electron microscopic observations on nerve terminals in the intrinsic muscles of albino rat iris. Acta physiol. scand. 67, 255–256 (1966b).

    Google Scholar 

  • —: Electron microscopic studies on brain slices from regions rich in catecholamine nerve terminals. Acta physiol. scand. 69, 119–120 (1967a).

    Google Scholar 

  • —: Ultrastructural studies on adrenergic nerve terminals in the albino rat iris after pharmacological and experimental treatment. Acta physiol. scand. 69, 125–126 (1967b).

    Google Scholar 

  • —: On the ultrastructural localization of noradrenaline in the central nervous system of the rat. Z. Zellforsch. 79, 110–117 (1967c).

    Google Scholar 

  • —: The possible ultrastructural identification of tubero-infundibular dopamine-containing nerve endings in the median eminence of the rat. Brain Res. 5, 121–123 (1967d).

    Google Scholar 

  • -, and G. Jonsson: Studies on reaction and binding of monoamines after fixation and processing for electron microscopy with special reference to fixation with potassium permanganate. Histochemie, in press (1968).

  • —, and O. Nilsson: The relationship between nerves and smooth muscle cells in the rat iris. II. The sphincter muscle. Z. Zellforsch. 66, 848–853 (1965).

    Google Scholar 

  • Holtz, P., K. Credner u. G. Kroneberg: Über das sympathicomimetische pressorische Prinzip des Harns (‘Urosympathin’). Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 204, 228–243 (1947).

    Google Scholar 

  • —: Über die Sympathicomimetische Wirksamkeit von Gehirnextrakten. Acta physiol. scand. 20, 354–362 (1950).

    Google Scholar 

  • —, u. D. Palm: Brenzkatechinamine und andere sympathicomimetische Amine. Biosynthese und Inaktivierung, Freisetzung und Wirkung. In: Ergebnisse der Physiologie (K. Kramer, O. Krayer, E. Lehnartz, F. Lynen, A. V. Muralt, U. G. Trendelenburg, A. H. Werer, and O. Westphal, eds.), Bd. 58, S. 1–580. Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  • Ishii, S., N. Shimizu, M. Matsuoka, and R. Imaizumi: Correlation between catecholamine content and numbers of granulated vesicles in rabbit hypothalamus. Biochem. Pharmacol. 14, 183–184 (1965).

    Google Scholar 

  • Iversen, L. L.: The uptake and storage of noradrenaline in sympathetic nerves. Cambridge: Cambridge University Press 1967.

    Google Scholar 

  • Jonsson, G.: Fluorescence methods for the histochemical demonstration of monoamines. VII. Fluorescence studies on biogenic monoamines and related compounds condensed with formaldehyde. Histochemie 8, 288–296 (1967).

    Google Scholar 

  • —, and M. Ritzén: Microspectrofluorometric identification of metaraminol in sympathetic adrenergic neurons. Acta physiol. scand. 67, 505–513 (1966).

    Google Scholar 

  • Katz, B.: The transmission of impulses from nerve to muscle and the subcellular unit of synaptic action. Proc. roy. Soc. B 155, 455–479 (1962).

    Google Scholar 

  • Kobayashi, H., Y. Oota, H. Uemura, and T. Hirano: Electron microscopic and pharmacologic studies on the rat median eminence. Z. Zellforsch. 71, 387–404 (1966).

    Google Scholar 

  • Koe, B. K., and A. Weissman: p-Chlorophenylalanine: A specific depletor of brain serotonin. J. Pharmacol. exp. Ther. 154, 499–516 (1966).

    Google Scholar 

  • Koenig, H.: Acidic glycolipoprotein granules (lysosomes) as probable binding sites of biogenic amines. In: Progress in brain research (H. E. Himwich and W. A. Himwich, eds.), vol. 8, p. 137–141. Amsterdam-London-New York: Elsevier Publ. Co. 1964.

    Google Scholar 

  • Kopin, I. J.: Biochemical aspects of release of norepinephrine and other amines from sympathetic nerve endings. Pharmacol. Rev. 18, 513–524 (1966).

    Google Scholar 

  • Laverty, R., J. A. Michaelson, D. F. Sharman, and V. P. Whittaker: The subcellular localization of dopamine and acetylcholine in the dog caudate nucleus. Brit. J. Pharmacol. 21, 482–490 (1963).

    Google Scholar 

  • Leonhardt, H.: Über axonähnliche Fortsätze, Sekretbildung und Extrusion der hellen Pinealozyten des Kaninchens. Z. Zellforsch. 82, 307–320 (1967).

    Google Scholar 

  • —, u. E. Lindner: Marklose Nervenfasern im III. und IV. Ventrikel des Kaninchen- und Katzengehirns. Z. Zellforsch. 78, 1–18 (1967).

    Google Scholar 

  • Lenn, N. J.: Electron microscopic observations on monoamine-containing brain stem neurons in normal and drug-treated rats. Anat. Rec. 153, 399–406 (1966).

    Google Scholar 

  • —: Localization of uptake of tritiated norepinephrine by rat brain in vivo and in vitro using electron microscopic autoradiography. Amer. J. Anat. 120, 377–390 (1967).

    Google Scholar 

  • Lever, J. D., and A. C. Esterhuizen: Fine structure of the arteriolar nerves in the guinea pig pancreas. Nature (Lond.) 192, 566–567 (1961).

    Google Scholar 

  • Lichtensteiger, W., and H. Langemann: Uptake of exogenous catecholamines by monoamine containing neurons of the central nervous system: Uptake of catecholamines by arcuato-infundibular neurons. J. Pharmacol. exp. Ther. 151, 469–492 (1966).

    Google Scholar 

  • —, U. Mutzner, and H. Langemann: Uptake of 5-hydroxytryptamine and 5-hydroxytryptophan by neurons of the central nervous system normally containing catecholamines. J. Neurochem. 14, 48997 (1967).

    Google Scholar 

  • Lindmar, R., u. E. Muscholl: Einfluß von Pharmaka auf die Elimination von Noradrenalin aus der Perfusionsflüssigkeit des isolierten Herzens. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 243, 347 (1962).

    Google Scholar 

  • —: Die Wirkung von Pharmaka auf die Elimination von Noradrenalin aus der Perfusionsflüssigkeit und die Noradrenalin-Aufnahme in das isolierte Herz. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 247, 469–492 (1964).

    Google Scholar 

  • Luft, J. H.: Permanganate — a new fixative for electron microscopy. J. biophys. biochem. Cytol. 2, 799–802 (1956).

    Google Scholar 

  • —: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961).

    Google Scholar 

  • Lundborg, P.: Studies on the uptake and subcellular distribution of catecholamines and their α-methylated analogues. Acta physiol. scand., Suppl. 302, 1–34 (1967).

    Google Scholar 

  • Malmfors, T.: The adrenergic innervation of the eye as demonstrated by fluorescence microscopy. Acta physiol. scand. 65, 259–267 (1965a).

    Google Scholar 

  • —: Studies on adrenergic nerves. The use of rat and mouse iris for direct observations on their physiology and pharmacology at cellular and subcellular levels. Acta physiol. scand. 64, Suppl. 248, 1–93 (1965b).

    Google Scholar 

  • - Studies on adrenergic nerves. Direct observations on their distribution in an effector system, degeneration and mechanisms for uptake, storage and release of catecholamines. M. D. Thesis, Stockholm 1965 c.

  • Marks, B. H., T. Samorajski, and E. J. Webster: Radioautographic localization of nor-epinephrine-H3 in the tissues of mice. J. Pharmacol. exp. Ther. 138, 376–381 (1962).

    Google Scholar 

  • Matsui, T.: Fine structure of the median eminence of the rat. J. Fac. Sci., Univ. Tokyo 11, 71–96 (1966).

    Google Scholar 

  • Matsuoka, M., S. Ishii, N. Shimizu, and R. Imaizumi: Effect of Win 18501-1 on the content of catecholamines and the number of catecholamine-containing granules in the rabbit hypothalamus. Experientia (Basel) 21, 121 (1965).

    Google Scholar 

  • Mazzuca, M.: Structure fine de l'éminence médiane du cobaye. J. Microscopie 4, 225–238 (1965).

    Google Scholar 

  • McEwen, L. M.: The effect on the isolated rabbit heart of vagal stimulation and its modification by cocaine, hexamethonium and oubain. J. Physiol. (Lond.) 131, 678–689 (1956).

    Google Scholar 

  • McIlwain, H., and R. Rodnight: Practical neurochemistry. London: J. A. Churchill 1962.

    Google Scholar 

  • —: Chemical exploration of the brain, p. 48–83. Amsterdam: Elsevier Publ. Co. 1963.

    Google Scholar 

  • Mori, S.: Some observations on the fine structure of the corpus striatum of the rat brain. Z. Zellforsch. 70, 461–488 (1966).

    Google Scholar 

  • Musacchio, J. M., I. J. Kopin, and V. K. Weise: Subcellular distribution of some sympathomimetic amines and their β-hydroxylated derivatives in the rat heart. J. Pharmacol. exp. Ther. 148, 22–28 (1965).

    Google Scholar 

  • —, J. E. Fischer, and I. J. Kopin: Subcellular distribution and release by sympathetic nerve stimulation of dopamine and α-methyl-dopamine. J.Pharmacol.exp.Ther. 152, 51–55 (1966).

    Google Scholar 

  • Muscholl, E.: Die Hemmung der Noradrenalin-Aufnähme des Herzens durch Reserpin und die Wirkung von Tyramin. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 240, 234–241 (1960).

    Google Scholar 

  • —: Effect of cocaine and related drugs on the uptake of noradrenaline by heart and spleen. Brit. J. Pharmacol. 16, 352–359 (1961).

    Google Scholar 

  • Nicolescu, P., M. Dolivo, C. Rouiller, and C. Foroglou-Kerameus: The effect of deprivation of glucose on the ultrastructure and function of the superior cervical ganglion of the rat in vitro. J. Cell Biol. 29, 267–285 (1966).

    Google Scholar 

  • Nilsson, O.: The relationship between nerves and smooth muscle cells in the rat iris. 1. The dilator muscle. Z. Zellforsch. 64, 166–171 (1964).

    Google Scholar 

  • Norberg, K.-A.: The sympathetic adrenergic neuron and certain adrenergic mechanisms. A histochemical study. M.D. Thesis, Stockholm 1965.

  • —: Transmitter histochemistry of the sympathetic adrenergic nervous system. Brain Res. 5, 125–170 (1967).

    Google Scholar 

  • —, and B. Hamberger: The sympathetic adrenergic neuron. Some characteristics revealed by histochemical studies on the intraneuronal distribution of the transmitter. Acta physiol. scand. 63, Suppl. 238, 1–2 (1964).

    Google Scholar 

  • Orden, L. S. Van, K. G. Bensch, and N. J. Giarman: Histochemical and functional relationships of catecholamines in adrenergic nerve endings. II. Extravesicular norepinephrine. J. Pharmacol. exp. Ther. 155, 428–439 (1967a).

    Google Scholar 

  • —, S. Z. Langer, and U. Trendelenburg: Histochemical and fine structural aspects of the onset of denervation supersensitivity in the nictiating membrane of the spinal cat. J. Pharmacol. exp. Ther. 157, 274–283 (1967b).

    Google Scholar 

  • Orden, L. S. Van, F. E. Bloom, R. J. Barrnett, and N. J. Giarman: Histochemical and functional relationships of catecholamines in adrenergic nerve endings. I. Participation of granular vesicles. J. Pharmacol. exp. Ther. 154, 185–199 (1966).

    Google Scholar 

  • Palade, G. E., and S. L. Palay: Electron microscope observations of intraneuronal and neuromuscular synapses. Anat. Rec. 118, 335 (1954).

    Google Scholar 

  • Pappius, H. M., and K. A. C. Elliott: Water distribution in incubated slices of brain and other tissues. Canad. J. Biochem. Physiol. 34, 1007–1022 (1956).

    Google Scholar 

  • —, I. Klatzo, and K. A. C. Elliott: Further studies on swelling of brain slices. Canad. J. Biochem. Physiol. 40, 885–898 (1962).

    Google Scholar 

  • Pellegrino de Iraldi, A., and E. De Robertis: Action of reserpine, iproniazid and pyrogallol on nerve endings of the pineal gland. Int. J. Neuropharmacol. 2, 231–239 (1963).

    Google Scholar 

  • - Ultrastructure and function of catecholamine containing systems. In: Proc. 2nd Int. Congr. Endocrinology. London 1964, Excerpta Medica Foundation, Int. Congr. Ser. No. 83, p. 355–363.

  • —, H. Farini Duggan, and E. De Robertis: Adrenergic synaptic vesicles in the anterior hypothalamus of the rat. Anat. Rec. 145, 521–531 (1963).

    Google Scholar 

  • —, and G. Jaim Etcheverry: Ultrastructural changes in the nerve endings of the median eminence after nialamide-DOPA administration. Brain Res. 6, 614–618 (1967).

    Google Scholar 

  • Pennefather, J. N., and M. J. Rand: Increase in noradrenaline content of tissues after infusion of noradrenaline, dopamine and 1-dopa. J. Physiol. (Lond.) 154, 234–241 (1960).

    Google Scholar 

  • Pick, J., C. De Lemos, and A. Ciannella: Fine structure of nerve terminals in the human gut. Anat. Rec. 159, 131–146 (1967).

    Google Scholar 

  • Pletscher, A., A. Brossi, and K. F. Gey: Benzoquinolizine derivates: a new class of monoamine decreasing drugs with psychotropic action. Int. Rev. Neurobiol. 4, 275–306 (1962).

    Google Scholar 

  • Potter, L. T.: Storage of norepinephrine in sympathetic nerves. Pharmacol. Rev. 18, 439–452 (1966).

    Google Scholar 

  • —: Role of intraneuronal vesicles in the synthesis storage, and release of noradrenaline. Circulation Res. 21, 13–24 (1967).

    Google Scholar 

  • —, and J. Axelrod: Subcellular localization of catecholamines in tissues of the rat. J. Pharmacol. exp. Ther. 142, 291–298 (1963a).

    Google Scholar 

  • —: Properties of norepinephrine storage particles of the rat heart. J. Pharmacol. exp. Ther. 142, 299–305 (1963b).

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    Google Scholar 

  • Richardson, K. C.: The fine structure of autonomic nerve endings in smooth muscle of the rat vas deferens. J. Anat. (Lond.) 96, 427–442 (1962).

    Google Scholar 

  • -, Structural and experimental studies on autonomic nerve endings in smooth muscle. Biochem. Pharmacol. 12, Suppl. 10 (1963).

  • —: The fine structure of the albino rabbit iris with special reference to the identification of adrenergic and cholinergic nerves and nerve endings in its intrinsic muscles. Amer. J. Anat. 114, 173–206 (1964).

    Google Scholar 

  • —: Electron microscopic identification of autonomiec nerve endings. Nature (Lond.) 210, 756 (1966).

    Google Scholar 

  • Rinne, U. K., and A. U. Arstila: Electron microscopic evidence on the significance of the granular and vesicular inclusions of the neurosecretory nerve endings in the median eminence of the rat. I. Ultrastructural alterations after reserpine injection. Med. Pharmacol. exp. 15, 357–369 (1966).

    Google Scholar 

  • Ross, S. B., and A. L. Renyi: Blocking action of sympathomimetic amines on the uptake of tritiated noradrenaline by mouse cerebral cortex tissues in vitro. Acta pharmacol. (Kbh.) 21, 226–239 (1964).

    Google Scholar 

  • Ruskell, G. L.: Vasomotor axons of the lacrimal glands of monkeys and the ultrastructural identification of sympathetic terminals. Z. Zellforsch. 83, 321–333 (1967).

    Google Scholar 

  • Sabatini, D. D., K. Bensch, and R. J. Barrnett: Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol. 17, 19–58 (1963).

    Google Scholar 

  • Samorajski, T., and B. H. Marks: Localization of tritiated norepinephrine in mouse brain. J. Histochem. Cytochem. 10, 352–399 (1962).

    Google Scholar 

  • Shimizu, N., and S. Ishii: Electron microscopic observation of catecholamine-containing granules in the hypothalamus and area postrema and their changes following reserpine injection. Arch. histol. jap. 24, 489–497 (1964).

    Google Scholar 

  • Shore, P. A., D. Busfield, and H. S. Alpers: Binding and release of metaraminol: Mechanism of norepinephrine depletion by α-methyl-m-tyrosine and related agents. J. Pharmacol. 146, 194–199 (1964).

    Google Scholar 

  • Spector, S., C. W. Hirsch, and B. B. Brodie: Association of behavioural effects of pargyline, a non-hydrazide MAO-inhibitor, with increase in brain norepinephrine. Int. J. Neuropharmacol. 2, 81–93 (1963).

    Google Scholar 

  • Spriggs, T. L. B., J. D. Lever, and J. D. P. Graham: Membrane connections at adrenergic terminals. J. Microscopie 6, 425–430 (1967).

    Google Scholar 

  • Stjärne, L.: Studies of catecholamine uptake storage and release mechanisms. Acta physiol. scand. 62, Suppl. 228, 1–97 (1964).

    Google Scholar 

  • -, R. H. Roth, and N. J. Giarman: Multiple types of norepinephrine-containing particles in sympathetic nerve tissue. Fed. Proc. 26 (1967).

  • Taxi, J.: Étude de l'ultrastructure des zones synaptiques dans les ganglions sympathétiques de la Grenouille. C. R. Acad. Sci. (Paris) 252, 174–176 (1961a).

    Google Scholar 

  • —: Sur l'innervation des fibres musculaires lisses de l'intestin de souris. C. R. Acad. Sci. (Paris) 252, 331–333 (1961b).

    Google Scholar 

  • —: Contribution a l'étude des connexions des neurons moteurs du système nerveux autonome. Ann. Sci. Nat. 7, 413–674 (1965).

    Google Scholar 

  • —, et B. Droz: Étude de l'incorporation de noradrenaline-3H (NA-3H) et des 5-hydroxytryptophane-3H (5-HTP-3H) dans les fibres nerveuses du canal déferent et de l'intestin. C. R. Acad. Sci. (Paris) 263, 1237–1240 (1966a).

    Google Scholar 

  • —: Étude de l'incorporation de noradrenaline-3H (NA-3H) et de 5-hydroxytryptophane-3H (5-HTP-3H) dans l'épiphyse et le ganglion cervical supérieur. C. R. Acad. Sci. (Paris) 263, 1326–1329 (1966b).

    Google Scholar 

  • Thoa, N. B., J. Axelrod, and D. Eccleston: Uptake and release of C14-serotonin in the noradrenergic neurones of the guinea pig vas deferens. Pharmacologist 9, 251 (1967).

    Google Scholar 

  • Thoenen, H., W. Haefely, K. F. Gey, and A. Hürlimann: Quantitative aspects of the replacement of norepinephrine by dopamine as a sympathetic transmitter following inhibition of dopamine-β-hydroxylase by disulfiram. J. Pharmacol. exp. Ther. 156, 246–251 (1967).

    Google Scholar 

  • —, A. Hürlimann, and W. Haefely: Removal of infused norepinephrine by the cat's spleen; mechanism of its inhibition by phenoxybenzamine. Experientia (Basel) 19, 601 (1963).

    Google Scholar 

  • Thorack, R. M., M. L. Dufty, and J. M. Haynes: The effect of anisotonic media upon cellular ultrastructure in fresh and fixed rat brain. Z. Zellforsch. 66, 690–700 (1965).

    Google Scholar 

  • Titus, E., N. Matussek, H. E. Spiegel, and B. B. Brodie: The effects of desmethylimipramine on uptake of dl-norepinephrine-7-H3 in the heart. J. Pharmacol. exp. Ther. 152, 469–477 (1966).

    Google Scholar 

  • Tramezzani, J., S. Chiocchio, and G. F. Wassermann: A technique for light and electron microscopic identification of adrenalin- and noradrenalin-storing cells. J. Histochem. Cytochem. 12, 890–899 (1964).

    Google Scholar 

  • Tranzer, J. P., M. Da Prada, and A. Pletscher: Ultrastructural localization of platelet 5-HT. Nature (Lond.) 212, 1574–1575 (1966).

    Google Scholar 

  • —, and H. Thoenen: Significance of empty vesicles in postganglionic sympathetic nerve terminals. Experientia (Basel) 23, 123–124 (1967).

    Google Scholar 

  • —: Electronmicroscopic localization of 5-hydroxydopamine (3,4,5-trihydroxy-phenylethylamine), a new “false” sympathetic transmitter. Experientia (Basel) 23, 743 (1967b).

    Google Scholar 

  • Twarog, B., and J. A. Page: Serotonin content of some mammalian tissues and urine and a method for its determination. Amer. J. Physiol. 175, 157–161 (1953).

    Google Scholar 

  • Udenfriend, S.: Tyrosine hydroxylase. Pharmacol. Rev. 18, 43–52 (1966).

    Google Scholar 

  • —, H. Weissbach, and C. T. Clark: The estimation of 5-hydroxytryptamine (serotonin) in biological tissues. J. biol. Chem. 215, 337–344 (1955).

    Google Scholar 

  • Umbreit, W. W., R. H. Burris, and J. F. Stauffer: Manometric techniques and tissue metabolism. Burgess Publ. Minneapolis 1951.

    Google Scholar 

  • Vitry, G.: Role de la glutaraldéhyde dans les réactions de mise en évidence des catécholamines de la médullo-surrénale. Arch. micr. Morph. exp. 56, 31–42 (1967).

    Google Scholar 

  • Vogt, M.: The concentration of sympathin in different parts of the central nervous system and normal conditions and after the administration of drugs. J. Physiol. (Lond.) 123, 451–481 (1964).

    Google Scholar 

  • Weiner, N., and O. Jardetsky: A study of catecholamine nucleotide complexes by nuclear magnetic resonance spectroscopy. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 248, 308–318 (1964).

    Google Scholar 

  • Whitby, L. G., J. Axelrod, and H. Weil-Malherbe: The fate of H3-norepinephrine in animals. J. Pharmacol. exp. Ther. 132, 193–201 (1961).

    Google Scholar 

  • —, G. Hertting, and J. Axelrod: Effect of cocaine on the disposition of noradrenaline labelled with tritium. Nature (Lond.) 187, 604–605 (1960).

    Google Scholar 

  • Wolfe, D. E., J. Axelrod, L. T. Potter, and K. C. Richardson: Localizing tritiated nor-epinephrine in sympathetic axons by electron microscope autoradiography. Science 138, 440–442 (1962).

    Google Scholar 

  • Wood, J. G.: Electron microscopic localization of amines in central nervous tissue. Nature (Lond.) 209, 1131–1133 (1966).

    Google Scholar 

  • —, and R. J. Barrnett: Histochemical demonstration of norepinephrine at a fine structural level. J. Histochem. Cytochem. 12, 197–209 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The investigation was supported by grants from the Karolinska Institutet (Reservationsanslaget), by a grant from the Swedish Medical Research Council (12X-715-04A) and by grants from “Stiftelsen Therese och Johan Anderssons Minne” and “Svenska Livförsäkringsbolags nämnd för medicinsk forskning”.

For generous supplies of drugs I am indebted to the following companies: Swedish Ciba, Sweden (Serpasil®); The Swedish Pfizer, Stockholm, Sweden (Niamid®); Hoechst Anilin AB, Göteborg, Sweden (Corbasil®); Hässle, Göteborg, Sweden, through Dr. H. Corrodi (α-methyl-DA and H 44/68); Merck, Sharp & Dohme Research Lab., Rahway, N.J., U.S.A., through Firma Lindblom and Co., Stockholm, Sweden (Aramin®); Geigy, Basel, Switzerland (Pertofran®); Hoffmann-La Roche, Basel, Switzerland (tetrabenazine).

The skillful technical assistance of Mrs. Waldtraut Hiort and Mrs. Hjördis Köszeghy is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hökfelt, T. In vitro studies on central and peripheral monoamine neurons at the ultrastructural level. Z. Zellforsch. 91, 1–74 (1968). https://doi.org/10.1007/BF00336984

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00336984

Keywords

Navigation