Skip to main content
Log in

Monoamine oxidase activity in the rat pineal gland: Comparison with brain areas and alteration during aging

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

With benzylamine as a substrate, the amine oxidase activity was determined in the pineal gland of adult rats and compared with the same activity in brain areas and the pituitary. Two groups of rats aged 6–8 and 14–15 months were also compared on the basis of this activity. The benzylamine deaminating activity in the pineal gland was significantly higher than in the area preoptica medialis, the corpus mamillare, the tuberculum olfactorium, and the hypophysis, and was lower than in the eminentia mediana. A significant increase of the activity in the pineal gland in animals aged 6–8 to 14—15 months was revealed. Benzylamine deaminating activity in the pineal gland was totally inhibited by 0.002 mM R-deprenyl, indicating B-type monoamine oxidase (MAO B) activity. An age-associated increase of MAO B activity in the pineal gland, accompanied by decrease of glutathione peroxidase activity, which was reported earlier, can cause oxidative damage in the pineal gland during aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vinogradova, I.A. and Chernova, I.V., The influence of illumination regime on age dynamics of estrous function and prolactin level in blood serum in rats, Usp. Gerontol., 2006, vol. 19, pp. 60–65.

    CAS  Google Scholar 

  2. Glantz, S.A., Primer of Biostatistics, New York: McGraw-Hill, 1996.

    Google Scholar 

  3. Gorkin, V.Z., Aminoksidazy i ikh znachenie v meditsine (Amine Oxidases and Their Role in Medicine), Moscow: Meditsina, 1981.

    Google Scholar 

  4. Matyushichev, V.B., Elementy statisticheskoi obrabotki rezul’tatov biokhimicheskogo eksperimenta (Statistical Data Analysis of Biochemical Experimental Data), Leningrad: Leningr. Gos. Univ., 1990.

    Google Scholar 

  5. Razygraev, A.V., Pineal gland glutathione peroxidase activity in rats and its age-associated change, Adv. Gerontol., 2011, vol. 1, no. 3, pp. 252–254.

    Article  Google Scholar 

  6. Razygraev, A.V., Glutathione peroxidase activity in structures of the white and gray matter of the rat brain, Neurochem. J., 2012, vol. 6, no. 1, pp. 14–16.

    Article  CAS  Google Scholar 

  7. Razygraev, A.V. and Arutjunyan, A.V., Monoamine oxidase activity in several structures of rat brain, Neurochem. J., 2007, vol. 1, no. 3, pp. 204–207.

    Article  Google Scholar 

  8. Razygraev, A.V. and Arutjunyan, A.V., Monoamine oxidase activity in the pineal gland and brain structures of different age rats, Usp. Gerontol., 2008, vol. 21, no. 3, pp. 402–405.

    CAS  Google Scholar 

  9. Chesnokova, L.S., Voinova, N.E., Komkova, A.I., and Lyanguzov, A.Yu., Quantitative protein analysis, in Fermenty i nukleinovye kisloty (Enzymes and Nucleic Acids), Lyzlova, S.N. and Vladimirov, B.G., Eds., St. Petersburg: S.-Peterb. Gos. Univ., 1997.

    Google Scholar 

  10. Anisimov, V.N., Popovich, I.G., Zabezhinski, M.A., et al., Melatonin as antioxidant, geroprotector and anticarcinogen, Biochim. Biophys. Acta, Bioenerg., 2006, vol. 1757, no. 5, pp. 573–589.

    Article  CAS  Google Scholar 

  11. Berry, M.D., Juorio, A.V., and Paterson, I.A., The functional role of monoamine oxidases A and B in the mammalian central nervous system, Progr. Neurobiol., 1994, vol. 42, no. 3, pp. 375–391.

    Article  CAS  Google Scholar 

  12. Buffoni, F., Banchelli, G., Ignesti, G., et al., The presence of an inhibitor of benzylamine oxidase in human blood plasma, Biochem. J., 1983, vol. 211, no. 3, p. 767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Díaz, E., Fernández, C., Castrillón, P.O., et al., Effect of exogenous melatonin on neuroendocrine-reproductive function of middle-aged female rats, J. Reprod. Fertil., 1999, vol. 117, no. 2, pp. 331–337.

    Article  PubMed  Google Scholar 

  14. González, S., Moreno-Delgado, D., Moreno, E., et al., Circadian-related heteromerization of adrenergic and dopamine D4 receptors modulates melatonin synthesis and release in the pineal gland, PLoS Biol., 2012, vol. 10, no. 6, e1001347.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Holschneider, D.P. and Shih, J.C., Monoamine oxidase: basic and clinical perspectives, in Psychopharmacology: The Fourth Generation of Progress, Bloom, F.E. and Kupfer, D.J., Eds., New York: Williams and Wilkins, 1998.

    Google Scholar 

  16. Jenwitheesuk, A., Nopparat, C., Mukda, S., et al., Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways, Int. J. Mol. Sci., 2014, vol. 15, no. 9, pp. 16848–16884.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kitahama, K., Araneda, S., Geffard, M., et al., Tyramineimmunoreactive neuronal structures in the rat brain: abundance in the median eminence of the mediobasal hypothalamus, Neurosci. Lett., 2005, vol. 383, no. 3, pp. 215–219.

    Article  CAS  PubMed  Google Scholar 

  18. Kvam, P.H. and Vidakovic, B., Nonparametric Statistics with Applications to Science and Engineering, Hoboken, NJ: Wiley, 2007.

    Book  Google Scholar 

  19. Masson-Pevet, M. and Pevet, P., Cytochemical localization of type-A and -B monoamine oxidase in the rat pineal gland, Cell Tissue Res., 1989, vol. 255, pp. 299–305.

    Article  CAS  PubMed  Google Scholar 

  20. Miguez, J.M., Recio, J., Sánchez-Barceló, E., and Aldegunde, M., Changes with age in daytime and nighttime contents of melatonin, indoleamines, and catecholamines in the pineal gland: a comparative study in rat and Syrian hamster, J. Pineal Res., 1998, vol. 25, no. 2, pp. 106–115.

    Article  CAS  PubMed  Google Scholar 

  21. Mishima, K., Okawa, M., Shimizu, T., and Hishikawa, Y., Diminished melatonin secretion in the elderly caused by insufficient environmental illumination, J. Clin. Endocrinol. Metab., 2001, vol. 86, no. 1, pp. 129–134.

    CAS  PubMed  Google Scholar 

  22. Nicotra, A., Pierucci, F., Parvez, H., and Senatori, O., Monoamine oxidase expression during development and aging, Neurotoxicology, 2004, vol. 25, pp. 155–165.

    Article  CAS  PubMed  Google Scholar 

  23. Paxinos, G. and Watson, C., The Rat Brain in Stereotaxic Coordinates, Sydney: Academic, 1982.

    Google Scholar 

  24. Przybylska-Gornowicz, B., Lewczuk, B., Ciesielska- Myszka, L., and Wyrzykowski, Z., Cytochemical localization of monoamine oxidase in the pig pineal gland, Folia Histochem. Cytobiol., 1994, vol. 32, pp. 161–166.

    CAS  PubMed  Google Scholar 

  25. R Core Team, R: A Language and Environment for Statistical Computing, Vienna, Austria: R Found. Stat. Comp., 2011. ISBN 3-900051-07-0.

  26. Ramsay, R.R., Monoamine oxidases: the biochemistry of the proteins as targets in medicinal chemistry and drug discovery, Curr. Topics Med. Chem., 2012, vol. 12, no. 20, pp. 2189–2209.

    Article  CAS  Google Scholar 

  27. Simonneaux, V. and Ribelayga, C., Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters, Pharmacol. Rev., 2003, vol. 55, pp. 325–395.

    Article  CAS  PubMed  Google Scholar 

  28. Tabor, C.W., Tabor, H., and Rosenthal, S.M., Purification of amine oxidase from beef plasma, J. Biol. Chem., 1954, vol. 208, no. 2, pp. 645–661.

    CAS  PubMed  Google Scholar 

  29. Thyagarajan, S., Meites, J., and Quadri, S.K., Deprenyl reinitiates estrous cycles, reduces serum prolactin, and decreases the incidence of mammary and pituitary tumors in old acyclic rats, Endocrinology, 1995, vol. 136, no. 3, pp. 1103–1110.

    CAS  PubMed  Google Scholar 

  30. Uçar, G., Semicarbazide-sensitive amine oxidase: biochemical and physiological properties, Turk. J. Biochem., 2004, vol. 29, no. 3, pp. 247–254.

    Google Scholar 

  31. van der Schyf, C.J. and Geldenhuys, W.J., Multimodal drugs and their future for Alzheimer’s and Parkinson’s disease, in International Review of Neurobiology, Youdim, M.B.H. and Douce, P., Eds., Oxford: Elsevier, 2011, vol. 100, pp. 107–125.

    Article  PubMed  Google Scholar 

  32. Vera, J.C., Measurement of microgram quantities of protein by a generally applicable turbidimetric procedure, Anal. Biochem., 1988, vol. 174, no. 1, pp. 187–196.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Razygraev.

Additional information

Original Russian Text © A.V. Razygraev, K.I. Taborskaya, K.Yu. Volovik, A.A. Bunina, M.A. Petrosyan, 2015, published in Uspekhi Gerontologii, 2015, Vol. 28, No. 4, pp. 674–680.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razygraev, A.V., Taborskaya, K.I., Volovik, K.Y. et al. Monoamine oxidase activity in the rat pineal gland: Comparison with brain areas and alteration during aging. Adv Gerontol 6, 111–116 (2016). https://doi.org/10.1134/S2079057016020120

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057016020120

Keywords

Navigation