Skip to main content
Log in

Human chromosome-specific repetitive DNA sequences: novel markers for genetic analysis

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Two recombinant DNA clones that are localized to single human chromosomes were isolated from a human repetitive DNA library. Clone pHuR 98, a variant satellite 3 sequence, specifically hybridizes to chromosome position 9qh. Clone pHuR 195, a variant satellite 2 sequence, specifically hybridizes to chromosome position 16qh. These locations were determined by fluorescent in situ hybridization to metaphase chromosomes, and confirmed by DNA hybridizations to human chromosomes sorted by flow cytometry. Pulsed field gel electrophoresis analysis indicated that both sequences exist in the genome as large DNA blocks. In situ hybridization to intact interphase nuclei showed a well-defined, localized organization for both DNA sequences. The ability to tag specific human autosomal chromosomes, both at metaphase and in interphase nuclei, allows novel molecular cytogenetic analyses in numerous basic research and clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arrighi FE, Hsu TC (1971) Localization of heterochromatin in human chromosomes. Cytogenetics 10:81–86

    Google Scholar 

  • Bartholdi MF (1985) DNA content and base composition of human chromosomes. J Colloid Interface Sci 105:426–434

    Google Scholar 

  • Barton P, Malcolm S, Murphy C, Ferguson-Smith MA (1982) Localization of the human alpha-globin gene cluster to the short arm of chromosome 16 (16p12–16pter) by hybridization in situ. J Mol Biol 156:269–278

    Google Scholar 

  • Beauchamp RS, Mitchell AR, Buckland RA, Bostock CJ (1979) Specific arrangements of human satellite III DNA sequences in human chromosomes. Chromosoma 71:153–166

    Google Scholar 

  • Bennett MD (1982) Nucleotypic basis of the spatial ordering of chromosomes in eukaryotes and the implications of the order for genome evolution and phenotypic variation. In: Dover GA, Flavell RB (eds) Genome evolution. Academic Press, New York, pp 239–261

    Google Scholar 

  • Bernheim A, Metezeau P, Guellaen G, Fellous M, Goldberg ME, Berger R (1983) Direct hybridization of sorted human chromosomes: Localization of the Y chromosome on the flow karyotype. Proc Natl Acad Sci USA 80:7571–7575

    Google Scholar 

  • Blobel G (1985) Gene gating: A hypothesis. Proc Natl Acad Sci USA 82:8527–8529

    Google Scholar 

  • Bostock CJ, Gosden JR, Mitchell AR (1978) Localization of a male-specific DNA fragment to a sub-region of the human Y chromosome. Nature 272:324–328

    Google Scholar 

  • Bove A, Bove J, Gropp A (1984) Cytogenetics of pregnancy wastage. Adv Hum Genet 14:1–57

    Google Scholar 

  • Britten RJ, Davidson EH (1969) Gene regulation for higher cells: A theory. Science 165:349–357

    Google Scholar 

  • Britten RJ, Kohne DE (1968) Repeated sequences in DNA. Science 161:529–540

    Google Scholar 

  • Burk RD, Stamberg J, Young KE, Smith KD (1983) Use of repetitive DNA for diagnosis of chromosomal rearrangements. Hum Genet 64:339–342

    Google Scholar 

  • Burk RD, Szabo P, O'Brien S, Nash WG, Yu L, Smith KD (1985) Organization and chromosomal specificity of autosomal homologs of human Y chromosome repeated DNA. Chromosoma 92:225–233

    Google Scholar 

  • Burlingame RW, Love WE, Wang B-C, Hamlin R, Moudrianarkis EN (1985) Crystallographic structure of the octamer histone core of the nucleosome. Science 228:546–553

    Google Scholar 

  • Burton FH, Loeb DD, Voliva CF, Martin SL, Edgell MH, Hutchison CA III (1986) Conservation throughout mammalia and extensive protein-encoding capacity of the highly repeated DNA long interspersed sequence one. J Mol Biol 187:291–304

    Google Scholar 

  • Carle GF, Olson MV (1984) Separation of chromosomal DNA molecules from yeast by orthogonal field-alternation gel electrophoresis. Nucleic Acids Res 12:5647–5664

    Google Scholar 

  • Carle GF, Frank M, Olson MV (1986) Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science 232:65–68

    Google Scholar 

  • Carpenter BF, Tompkins DJ (1982) The trisomy 9 syndrome. Perspect Pediatr Pathol 7:109–120

    Google Scholar 

  • Clarke L, Carbon J (1985) The structure and function of yeast centromeres. Annu Rev Genet 19:29–55

    Google Scholar 

  • Cooke HJ, Hindley J (1979) Cloning of human satellite III DNA: Different components are on different chromosomes. Nucleic Acids Res 6:3177–3197

    Google Scholar 

  • Coulson A, Sulston J, Brenner S, Karn J (1986) Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 83:7821–7825

    Google Scholar 

  • Deaven LL, VanDilla MA, Bartholdi MF, Carrano AV, Cram LS, Fuscoe JC, Gray JW, Hildebrand CE, Moyzis RK, Perlman J (1987) Construction of human chromosome-specific DNA libraries from flow sorted chromosomes. Cold Spring Harbor Symp Quant Biol 51:159–167

    Google Scholar 

  • Deininger PL, Jolly DJ, Rubin CM, Friedmann T, Schmid CW (1981) Base sequence studies of 300 nucleotide renatured repeated human DNA clones. J Mol Biol 151:17–33

    Google Scholar 

  • Devilee P, Cremer T, Slagboom P, Bakker E, Scholl HP, Hager HD, Stevenson AFG, Cornelisse CJ, Pearson PL (1986) Two subsets of Human alphoid repetitive DNA show distinct preferential localization in the pericentric regions of chromosomes 13, 18, and 21. Cytogenet Cell Genet 41:193–201

    Google Scholar 

  • Devine EA, Nolin SL, Houck GE Jr, Jenkins EC, Brown WT (1985) Chromosomal localization of several families of repetitive sequences by in situ hybridization. Am J Hum Genet 37:114–123

    Google Scholar 

  • Dover G (1982) Molecular drive: A cohesive model of species evolution. Nature 299:111–117

    Google Scholar 

  • Durnam DM, Gelinas RE, Myerson D (1985) Detection of species specific chromosomes in somatic cell hybrids. Somatic Cell Mol Genet 11:571–577

    Google Scholar 

  • Epstein CJ, Cox DR, Schonberg SA, Hogge WA (1983) Recent developments in the prenatal diagnosis of genetic diseases and birth defects. Annu Rev Genet 17:49–83

    Google Scholar 

  • Frommer M, Prosser J, Tkachuk D, Reisner AH, Vincent PC (1982) Simple repeated sequences in human satellite DNA. Nucleic Acids Res 10:547–563

    Google Scholar 

  • Goad WB (1986) Computational analysis of genetic sequences. Annu Rev Biophys Biophys Chem 15:79–95

    Google Scholar 

  • Gosden JR, Mitchell AR, Buckland RA, Clayton RP, Evans HJ (1975) The location of four human satellite DNAs on human chromosomes. Exp Cell Res 92:148–158

    Google Scholar 

  • Gosden JR, Lawrie SS, Cooke HJ (1981) A cloned repeated DNA sequence in human chromosome heteromorphisms. Cytogenet Cell Genet 29:32–39

    Google Scholar 

  • Graham GJ, Hall TJ, Cummings MR (1984) Isolation of repetitive DNA sequences from human chromosome 21. Am J Hum Genet 36:25–35

    Google Scholar 

  • Gray JW, Langlois RG (1986) Chromosome classification and purification using flow cytometry and sorting. Annu Rev Biophys Biophys Chem 15:195–235

    Google Scholar 

  • Grimaldi G, Skowronski J, Singer MF (1984) Defining the beginning and end of KpnI family segments. EMBO J 3:1753–1759

    Google Scholar 

  • Gusella JF (1986) DNA polymorphism and human disease. Annu Rev Biochem 55:831–854

    Google Scholar 

  • Gusella JF, Jones C, Kao F-T, Housman D, Puck TT (1982) Genetic fine-structure mapping in human chromosome 11 by use of repetitive DNA sequences. Proc Natl Acad Sci USA 79:7804–7808

    Google Scholar 

  • Harper ME, Saunders GF (1981) Localization of single copy DNA sequences on G-banded human chromosomes by in situ hybridization. Chromosoma 83:431–439

    Google Scholar 

  • Henderson AS (1982) Cytological hybridization to mammalian chromosomes. Int Rev Cytol 76:1–46

    Google Scholar 

  • Hennig W (1986) Heterochromatin and germ line-restricted DNA. In: Hennig W (ed) Results and problems in cell differentiation 13. Germ-line soma differentiation. Springer, Berlin Heidelberg New York Tokyo, pp 175–192

    Google Scholar 

  • Herzenberg LA, Bianchi DW, Schroder J, Cann HM, Iverson GM (1979) Fetal cells in the blood of pregnant women: Detection and enrichment by fluorescence-activated cell sorting. Proc Natl Acad Sci USA 76:1453–1455

    Google Scholar 

  • Higgins MJ, Wang H, Shtromas I, Haliotis T, Roder JC, Holden JJA, White BN (1986) Organization of a repetitive human 1.8 kb KpnI sequence localized in the heterochromatin of chromosome 15. Chromosoma 93:77–86

    Google Scholar 

  • Jabs EW, Wolf SF, Migeon BR (1984) Characterization of a cloned DNA sequence that is present at centromeres of all human autosomes and the X chromosome and shows polymorphic variation. Proc Natl Acad Sci USA 81:4884–4888

    Google Scholar 

  • Jeanpierre M, Weil D, Gallano P, Creau-Goldberg N, Junien C (1985) The organization of two related subfamilies of a human tandemly repeated DNA is chromosome-specific. Hum Genet 70:302–310

    Google Scholar 

  • John B, Miklos GLG (1979) Functional aspects of satellite DNA and heterochromatin. Int Rev Cytol 58:1–114

    Google Scholar 

  • Johnson GD, Araujo GM (1981) A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods 43:349–350

    Google Scholar 

  • Jones KW, Corneo G (1971) Location of satellite and homogeneous DNA sequences on human chromosomes. Nature New Biol 233:268–271

    Google Scholar 

  • Jones KW, Prosser J, Corneo G, Ginelli E (1973) The chromosomal location of human satellite DNA III. Chromosoma 42:445–451

    Google Scholar 

  • Jorgensen LA, Bostock CJ, Bak AL (1986) Chromosome-specific subfamilies within human alphoid repetitive DNA. J Mol Biol 187:185–196

    Google Scholar 

  • Joyce C (1987) The race to map the human genome. New Sci 1550:35–40

    Google Scholar 

  • Karin M, Shows TB (1984) The human metallothionein gene family is clustered on chromosome 16. Proc Natl Acad Sci USA 81:5494–5498

    Google Scholar 

  • Kunkel LM, Smith KD, Boyer SH (1979) Organization and heterogeneity of sequences within a repeating unit of human Y chromosome deoxyribonucleic acid. Biochemistry 18:3343–3353

    Google Scholar 

  • Langer PR, Waldrop AA, Ward DC (1981) Enzymatic synthesis of biotin-labeled polynucleotides: Novel nucleic acid affinity probes. Proc Natl Acad Sci USA 78:6633–6637

    Google Scholar 

  • Lau Y-F (1985) Detection of Y-specific repeat sequences in normal and variant human chromosomes using in situ hybridization with biotinylated probes. Cytogenet Cell Genet 39:184–187

    Google Scholar 

  • LeBeau MM, Diaz MO, Karin M, Rowley JD (1985) Metallothionein gene cluster is split by chromosome 16 rearrangements in myelomonocytic leukaemia. Nature 313:709–711

    Google Scholar 

  • Lebo RV, Gorin F, Fletterick RJ, Kao F-T, Cheung M-C, Bruce BD, Kan YW (1984) High-resolution chromosome sorting and DNA spot-blot analysis assign McArdle's syndrome to chromosome 11. Science 225:57–59

    Google Scholar 

  • Longmire JL, Albright KL, Lewis AK, Meincke LJ, Hildebrand CE (1987) A rapid and simple method for the isolation of high molecular weight cellular and chromosome-specific DNA in solution without the use of organic solvents. Nucleic Acids Res 15:859

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Manuelidis L(1984) Different central nervous system cell types display distinct and nonrandom arrangements of satellite DNA sequences. Proc Natl Acad Sci USA 81:3123–3127

    Google Scholar 

  • Manuelidis L, Langer-Safer PR, Ward DC (1982) High-resolution mapping of satellite DNA using biotin-labeled DNA probes. J Cell Biol 95:619–625

    Google Scholar 

  • Meinkoth J, Wahl G (1984) Hybridization of nucleic acids immobilized on solid supports. Anal Biochem 138:267–284

    Google Scholar 

  • Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101:20–78

    Google Scholar 

  • Meyne J, Bartholdi MF, Travis G, Cram LS (1984) Counterstaining human chromosomes for flow karyology. Cytometry 5:580–583

    Google Scholar 

  • Mitchell AR, Beauchamp RS, Bostock CJ (1979) A study of sequence homologies in four satellite DNAs of man. J Mol Biol 135:127–149

    Google Scholar 

  • Mitchell AR, Ambros P, McBeath S, Chandley AC (1986) Molecular hybridization to meiotic chromosomes in man reveals sequence arrangement on the No. 9 chromosome and provides clues to the nature of “parameres”. Cytogenet Cell Genet 41:89–95

    Google Scholar 

  • Moyzis RK, Bonnet J, Li DW, Ts'o POP (1981) An alternative view of mammalian DNA sequence organization I. Repetitive sequence interspersion in Syrian hamster DNA: A model system. J Mol Biol 153:841–870

    Google Scholar 

  • Murray AW, Szostak JW (1985) Chromosome segregation in mitosis and meiosis. Annu Rev Cell Biol 1: 389–315

    Google Scholar 

  • Olson MV, Dutchik JE, Graham MY, Brodeur GM, Helms C, Frank M, MacCollin M, Scheinman R, Frank T (1986) Random-clone strategy for genomic restriction mapping in yeast. Proc Natl Acad Sci USA 83:7826–7830

    Google Scholar 

  • Orgel LE, Crick FHC (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607

    Google Scholar 

  • Pardue ML, Gall JG (1970) Chromosomal localization of mouse satellite DNA. Science 168:1356–1358

    Google Scholar 

  • Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938

    Google Scholar 

  • Prosser J, Reisner AH, Bradley ML, Ho K, Vincent PC (1981) Buoyant density and hybridization analysis of human DNA sequences, including three satellite DNAs. Biochim Biophys Acta 656:93–102

    Google Scholar 

  • Prosser J, Frommer M, Paul C, Vincent PC (1986) Sequence relationships of three human satellite DNAs. J Mol Biol 187:145–155

    Google Scholar 

  • Rappold GA, Cremer T, Hager HD, Davies KE, Muller CR, Yang T (1984) Sex chromosome positions in human interphase nuclei as studied by in situ hybridization with chromosome-specific DNA probes. Hum Genet 67:317–325

    Google Scholar 

  • Reeders ST, Breuning MH, Davies KE, Nicholls RD, Jarman AP, Higgs DR, Pearson PL, Weatherall DJ (1985) A highly polymorphic DNA marker linked to adult polycystic kidney disease on chromosome 16. Nature 317:542–544

    Google Scholar 

  • Rhodes D, Klug A (1986) An underlying repeat in some transcriptional control sequences corresponding to half a double helical turn of DNA. Cell 46:123–132

    Google Scholar 

  • Sandberg AA (1980) The chromosomes in human cancer and leukemia. Elsevier Science Publishing Co., Inc., New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulsen AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Saunders GF, Hsu TC, Getz MJ, Simes EL, Arrighi FE (1972) Locations of a human satellite DNA in human chromosomes. Nature New Biol 236:244–246

    Google Scholar 

  • Schmid CW, Jelinek WR (1982) The Alu family of dispersed repetitive sequences. Science 216:1065–1070

    Google Scholar 

  • Schwartz DC, Cantor CR (1984) Separation of yeast chromosomesized DNAs by pulsed field gel electrophoresis. Cell 37:67–75

    Google Scholar 

  • Schweizer D (1981) Counterstain — enhanced chromosome banding. Hum Genet 57:1–14

    Google Scholar 

  • Schweizer D, Ambros P, Andrle M (1978) Modification of DAPI banding on human chromosomes by prestaining with a DNAbinding oligopeptide antibiotic, distamycin A. Exp Cell Res 111:327–332

    Google Scholar 

  • Sillar R, Young BD (1981) A new method for the preparation of metaphase chromosomes for flow analysis. J Histochem Cytochem 29:74–78

    Google Scholar 

  • Simoni G, Brambati B, Danesino C, Rossella F, Terzoli GL, Ferrari M, Fraccaro M (1983) Efficient direct chromosome analysis and enzyme determinations from chorionic villi samples in the first trimester of pregnancy. Hum Genet 63:349–357

    Google Scholar 

  • Singer MT (1982) Highly repeated sequences in mammalian genomes. Int Rev Cytol 76:67–112

    Google Scholar 

  • Smith GP (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191:528–535

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Google Scholar 

  • Stanbridge EJ, Der CJ, Doersen C-J, Nishimi RY, Peehl DM, Weissman BE, Wilkinson JE (1982) Human cell hybrids: Analysis of transformation and tumorigenicity. Science 215: 252–259

    Google Scholar 

  • Strauss F, Varshavsky A (1984) A protein binds to a satellite DNA repeat at three specific sites that would be brought into mutual proximity by DNA folding in the nucleosome. Cell 37:889–901

    Google Scholar 

  • Therman E (1986) Human chromosomes, 2nd edn. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Van den Engh G, Trask B, Cram LS, Bartholdi M (1984) Preparation of chromosome suspensions for flow cytometry. Cytometry 5:108–117

    Google Scholar 

  • Van Dilla MA, Deaven LL, Albright KL, Allen NA, Aubuchon MR, Bartholdi MF, Brown NC, Campbell EW, Carrano AV, Clark LM, Cram LS, Crawford BD, Fuscoe JC, Gray JW, Hildebrand CE, Jackson PJ, Jett JH, Longmire JL, Lozes CR, Luedemann ML, Martin JC, McNinch JS, Meineke LJ, Mendelsohn ML, Meyne J, Moyzis RK, Munk AC, Perlman J, Peters DC, Silva AJ, Trask BJ (1986) Human chromosomespecific DNA libraries: construction and availability. Biotechnology 4:537–552

    Google Scholar 

  • Vorsanova SG, Yurov YB, Alexandrov IA, Demidova IA, Mitkevich SP, Tirskaia AF (1986) 18p syndrome: An unusual case and diagnosis by in situ hybridization with chromosome 18-specific alphoid DNA sequence. Hum Genet 72:185–187

    Google Scholar 

  • Walker PMB (1971) Repetitive DNA in higher organisms. Prog Biophys Mol Biol 23:145–190

    Google Scholar 

  • Waye JS, Willard HF (1986) Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: Evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome. Mol Cell Biol 6:3156–3165

    Google Scholar 

  • Weiner AM, Deininger PL, Efstratiadis A (1986) Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem 55:631–661

    Google Scholar 

  • Wetmur JG (1975) Acceleration of DNA renaturation rates. Biopolymers 14:2517–2524

    Google Scholar 

  • Willard HF (1985) Chromosome-specific organization of human alpha satellite DNA. Am J Hum Genet 37:524–532

    Google Scholar 

  • Willard HF, Smith KD, Sutherland J (1983) Isolation and characterization of a major tandem repeat family from the human X chromosome. Nucleic Acids Res 11:2017–2033

    Google Scholar 

  • Williams T, Zardawi I, Quaife K, Young ID (1985) Complex cardiac malformation in a case of trisomy 9. J Med Genet 22:230–233

    Google Scholar 

  • Wolman SR (1986) Cytogenetic heterogeneity: Its role in tumor evolution. Cancer Genet Cytogenet 19:129–140

    Google Scholar 

  • Yang TP, Hansen SK, Oishi KK, Ryder OA, Hamkalo BA (1982) Characterization of a cloned repetitive DNA sequence concentrated on the human X chromosome. Proc Natl Acad Sci USA 79:6593–6597

    Google Scholar 

  • Yunis JJ, Prakash O (1982) The origin of man: A chromosomal pictorial legacy. Science 215:1525–1530

    Google Scholar 

  • Yunis JJ, Yasmineh WG (1971) Heterochromatin, satellite DNA, and cell function. Science 174:1200–1209

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moyzis, R.K., Albright, K.L., Bartholdi, M.F. et al. Human chromosome-specific repetitive DNA sequences: novel markers for genetic analysis. Chromosoma 95, 375–386 (1987). https://doi.org/10.1007/BF00333988

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00333988

Keywords

Navigation