Skip to main content

Cytogenetics: Methodologies

  • Chapter
  • First Online:
Molecular Pathology in Cancer Research
  • 1047 Accesses

Abstract

Genetic disorders can be associated with DNA changes which range from whole chromosome aneuploidies to single nucleotide sequence variations. Detection of these different genetic abnormalities requires different laboratory techniques. In this chapter, we shall discuss the principles behind cytogenetic methodologies, including conventional karyotyping, fluorescence in situ hybridisation (FISH), and microarray copy number analyses. We shall also briefly discuss the principles behind some commonly used molecular genetic techniques including direct DNA sequencing, multiplex ligation-dependent probe amplification, Southern blot, PCR fragment sizing, real-time PCR, and massively parallel sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gardner RJM, Sutherland GR, Shaffer LG (2011) Chromosome abnormalities and genetic counselling. Oxford monographs on medical genetics, vol 61, 4th edn. Oxford University Press, New York

    Book  Google Scholar 

  2. Trask BJ (2002) Human cytogenetics: 46 chromosomes, 46 years and counting. Nat Rev Genet 3(10):769–778. doi:10.1038/nrg905

    Article  CAS  PubMed  Google Scholar 

  3. Tonnies H (2002) Modern molecular cytogenetic techniques in genetic diagnostics. Trends Mol Med 8(6):246–250

    Article  CAS  PubMed  Google Scholar 

  4. Price CM (1993) Fluorescence in situ hybridization. Blood Rev 7(2):127–134

    Article  CAS  PubMed  Google Scholar 

  5. Volpi EV, Bridger JM (2008) FISH glossary: an overview of the fluorescence in situ hybridization technique. Biotechniques 45(4):385–386, 388, 390 passim. doi:10.2144/000112811

    Google Scholar 

  6. Ventura RA, Martin-Subero JI, Jones M, McParland J, Gesk S, Mason DY, Siebert R (2006) FISH analysis for the detection of lymphoma-associated chromosomal abnormalities in routine paraffin-embedded tissue. J Mol Diagn 8(2):141–151. doi:10.2353/jmoldx.2006.050083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ried T, Schrock E, Ning Y, Wienberg J (1998) Chromosome painting: a useful art. Hum Mol Genet 7(10):1619–1626

    Article  CAS  PubMed  Google Scholar 

  8. Tanner M, Gancberg D, Di Leo A, Larsimont D, Rouas G, Piccart MJ, Isola J (2000) Chromogenic in situ hybridization: a practical alternative for fluorescence in situ hybridization to detect HER-2/neu oncogene amplification in archival breast cancer samples. Am J Pathol 157(5):1467–1472. doi:10.1016/S0002-9440(10)64785-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holcomb IN, Trask BJ (2011) Comparative genomic hybridization to detect variation in the copy number of large DNA segments. Cold Spring Harb Protoc 2011(11):1323–1333. doi:10.1101/pdb.top066589

    Article  PubMed  Google Scholar 

  10. Chari R, Lockwood WW, Lam WL (2006) Computational methods for the analysis of array comparative genomic hybridization. Cancer Inform 2:48–58

    CAS  Google Scholar 

  11. Cooper GM, Mefford HC (2011) Detection of copy number variation using SNP genotyping. Methods Mol Biol 767:243–252. doi:10.1007/978-1-61779-201-4_18

    Article  CAS  PubMed  Google Scholar 

  12. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, Heiner C, Kent SB, Hood LE (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321(6071):674–679. doi:10.1038/321674a0

    Article  CAS  PubMed  Google Scholar 

  14. Shen Y, Wu BL (2009) Designing a simple multiplex ligation-dependent probe amplification (MLPA) assay for rapid detection of copy number variants in the genome. J Genet Genomics 36(4):257–265. doi:10.1016/S1673-8527(08)60113-7

    Article  CAS  PubMed  Google Scholar 

  15. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30(12), e57

    Article  PubMed  PubMed Central  Google Scholar 

  16. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98(3):503–517

    Article  CAS  PubMed  Google Scholar 

  17. Southern E (2006) Southern blotting. Nat Protoc 1(2):518–525. doi:10.1038/nprot.2006.73

    Article  CAS  PubMed  Google Scholar 

  18. Rizzo JM, Buck MJ (2012) Key principles and clinical applications of “next-generation” DNA sequencing. Cancer Prev Res 5(7):887–900. doi:10.1158/1940-6207.CAPR-11-0432

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiyan Lau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Lau, C. (2016). Cytogenetics: Methodologies. In: Lakhani, S., Fox, S. (eds) Molecular Pathology in Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6643-1_3

Download citation

Publish with us

Policies and ethics