Skip to main content
Log in

Arrangement, ultrastructure, and adrenergic innervation of smooth musculature of the ductuli efferentes, ductus epididymidis and ductus deferens of man

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

  1. 1.

    There is a gradual proximo-distal increase in the thickness of the muscle coat of the human ductuli efferentes, duetus epididymidis and ductus deferens. Circularly arranged smooth muscle bundles predominate in the ductuli efferentes and ductus epididymidis of the caput section. Scanty strands of longitudinally and obliquely oriented smooth muscle bundles form an additional, incomplete outer muscle layer around the ductus epididymidis of the corpus. Small smooth muscle-like cells constitute the muscle elements of the upper sections of the excretory ducts (from the ductuli efferentes to the midcauda). At the transition of the corpus and cauda epididymidis ordinary large smooth muscle cells join the small contractile cells to form—in more distal sections of the cauda—a composed, thick subepithelial muscle coat. In most distal portions of the cauda, the two-layered muscle coat of the ductus epididymidis is transformed into a three-layered coat, a pattern of construction which is retained in the vas deferens.

  2. 2.

    Electron microscopically, three types of contractile cells are distinguished in the human ductuli efferentes and ductus epididymidis: a) contractile cells of medium transparency containing exclusively thin myofilaments (60 Å in diameter), b) dark contractile cells containing bundles of thin myofilaments (60 Å in diameter) and single coarse filaments (140 Å in diameter), c) light contractile cells with loosely dispersed, interweaving thin and thick myofilaments. Commutual diameter changes at regular intervals are seen in individual myofilaments, giving the impression of structural periodicity not unlike that of filaments of striated muscle. Ordinary smooth muscle cells of the cauda epididymidis and vas deferens are characterized by uniformly sized, closely packed but evenly distributed thin myofilaments with numerous dense patches.

  3. 3.

    Fluorescence microscopy performed on formaldehyde treated freeze dried tissues reveals that the contractile cells of the ductuli efferentes in man and monkey receive a low number of single adrenergic terminal fibres penetrating the depth of the muscle coat. The adrenergic innervation of the ductus epididymidis is restricted to small peritubular nerve fascicles running contiguous to the most superficially located bundles of smooth muscle-like cells. The adrenergic ground plexus is rather wide-meshed in the proximal cauda, becomes increasingly dense in more distal cauda sections and in initial, funicular portions of the vas deferens, and reaches maximum density in abdominal parts of the ductus. Perivascular and adventitial adrenergic plexuses are well developed at arteries of the caput and corpus epididymidis in man, monkey, rabbit, guinea-pig and rat.

  4. 4.

    Electron microscopically, noradrenergic nerves have been identified by the presence of small granular vesicles in preterminal varicose axon dilatations. Nerve fibre swellings filled with small empty spherical vesicles have been considered to belong to “cholinergic” neurons whereas occasional varicosities equipped with some large membrane bound granules and abundant mitochondria may represent local expansions of sensory axons.

  5. 5.

    Neuromuscular relationships in the upper sections of excretory ducts comprise adrenergic synapses by distance (more than 1000 Å), and a few intimate, ensheated close contacts, whereas the main type of contact of nerves to ordinary smooth muscle cells in the lower duct section is by means of close but not intimate approach (500–2000 Å).

  6. 6.

    Adrenergic synapses in the ductus epididymidis and ductus deferens of the monkey resemble—what concerns their morphology, relationship to effectors and distribution pattern—those of man.

  7. 7.

    In accordance with the total number of vascular and non-vascular adrenergic nerves, visualized by fluorescence microscopy, the amount of noradrenaline varied considerably in different sections of the human male internal genital organs: The lowest amounts were estimated in the testis (0.12±0.03 μg/g). Medium to high concentrations were detected in various sections of the caput and corpus epididymidis (ductuli efferentes 0.60±0.09 μg/g; ductuli efferentes and caput 0.72±0.13 μg/g; corpus epididymidis 1.04±0.25 μg/g; proximal cauda 0.95±0.17 μg/g; distal cauda 0.97±0.19 μg/g). The highest noradrenaline content was found in the human vas deferens (prox. vas deferens 1.11±0.21 μg/g; interm. vas deferens 1.20±0.42 μg/g; distal portion 1.43±0.39 μg/g).

  8. 8.

    For comparison, the noradrenaline content of the testis and epididymis of the rhesus monkey, the epididymis of the rabbit and the vas deferens of the rabbit, mouse, guinea-pig and rat has been determined.

  9. 9.

    Adrenaline of exogenous origin was detected in the vas deferens, cauda epididymidis and plexus pampiniformis of two cases who received this catecholamine as part of the local anaesthetic drug mixture. Due to methodological reasons, the presence of small amounts of adrenaline of endogenous source in adrenergic nerves of the human and monkey internal male genital organs cannot be excluded.

  10. 10.

    The differences in motility behaviour of the ductus epididymidis (spontaneous, rhythmic contractions) and ductus deferens (absence of any spontaneous movements under conditions at rest) in vivo and in vitro have been correlated with the occurrence of specialized contractile cells in the upper segment (ductuli efferentes, ductus epididymidis of the caput, corpus and initial cauda) and ordinary large smooth muscle cells in the lower segment (ductus epididymidis of the distal cauda and the vas deferens) and furthermore correlated with differences in the pattern of the adrenergic innervation; the concept is advanced that progressive cytological differentiation of smooth muscle cells and the development of a dense direct adrenergic innervation suppresses autocontractility and, that the reverse condition may favour spontaneous motility of smooth muscle elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambache, N., Zar, M. A.: Motor transmission in the vas deferens: The inhibitory action of noradrenaline. Brit. J. Pharmacol. 40, 556 P. (1970).

  • - - Some physiological and pharmacological characteristics of the motor transmission in the guinea-pig vas deferens. J. Physiol. (Lond.) 212, 15 P. (1971).

  • Battaglia, G.: Prime osservazioni sui movimenti dell'epididimo del ratto in culture organotipiche rotanti. Boll. Soc. ital. Biol. sper. 32, 265–267 (1956).

    Google Scholar 

  • Baumgarten, H. G.: Vorkommen und Verteilung adrenerger Nervenfasern im Darm der Schleie (Tinca vulgaris Cuv.). Z. Zellforsch. 76, 248–256 (1967a).

    Google Scholar 

  • —: Über die Verteilung con Catecholaminen im Darm des Menschen. Z. Zellforsch. 83, 133–146 (1967b).

    Google Scholar 

  • - Occurrence and distribution of biogenic monoamines in the central nervous system of the cyclostome Lampetra fluviatilis (with comparative remarks on teleosts, elasmobranchs, amphibians and reptiles): A chemical, histochemical and electronmicroscopical study. Progr. Histochem. Cytochem. (1971), (in press).

  • —, Falck, B., Holstein, A. F., Owman, Ch., Owman, T.: Adrenergic innervation of the human testis, epididymis, ductus deferens and prostate: A fluorescence microscopic and fluorimetric study. Z. Zellforsch. 90, 81–95 (1968).

    Google Scholar 

  • —, Holstein, A. F.: Noradrenerge Nervenfasern im Hoden von Mammaliern und anderen Vertebraten. Acta neuroveg. (Wien), Suppl.-Bd., 10, 563–572 (1971).

    Google Scholar 

  • Baumgarten, H. G., Holstein, A. F., Owman, Ch.: Auerbach's plexus of mammals and man: Electron microscopic identification of three different types of neuronal processes in myenteric ganglia of the large intestine from rhesus monkeys, guinea-pigs and man. Z. Zellforsch. 106, 376–397 (1970).

    Google Scholar 

  • Bell, Ch.: An electrophysiological study of the effects of atropine and physostigmine on transmission to the guinea-pig vas deferens. J. Physiol. (Lond.) 189, 31–42 (1967).

    Google Scholar 

  • Benninghoff, A.: Über die Beziehungen zwischen elastischem Gerüst und glatter Muskulatur in der Arterienwand und ihre funktionelle Bedeutung. Z. Zellforsch. 6, 348–396 (1927/28).

    Google Scholar 

  • Benoit, M. J.: Recherches anatomiques, cytologiques et histophysiologiques sur les vois excrétrices du testicule chez les mammifères. Arch. Anat. (Strasbourg) 5, 173–412 (1926).

    Google Scholar 

  • Bertler, A., Carlsson, A., Rosengren, E., Waldeck, B.: A method for the fluorometric determination of adrenaline, noradrenaline, and dopamine in tissues. Kgl. fysiogr. Sällsk. Lund Förh. 28, 121–123 (1958).

    Google Scholar 

  • Birmingham, A. T.: Sympathetic denervation of the smooth muscle of the vas deferens. J. Physiol. (Lond.) 206, 645–661 (1970).

    Google Scholar 

  • Bloom, F. E.: The fine structural localization of biogenic monoamines in nervous tissue. Int. Rev. Neurobiol. 13, 27–66 (1970).

    Google Scholar 

  • Boeminghaus, H.: Transport des Spermas im Vas deferens. Verh. Ber. dtsch. Ges. Urol. Hamburg 1955. Sonderbd. Z. Urol. 138–140 (1957).

  • Burnstock, G.: Structure of smooth muscle and its innervation. In: Smooth muscle, ed. by E. Bülbring, A. F. Brading, A. W. Jones and T. Tomita, p. 1–66. London: Edw. Arnold (Publish. Ltd.) 1970.

    Google Scholar 

  • —, Robinson, P. M.: Localization of catecholamines and acetylcholinesterase in autonomic nerves. Suppl. III, Circulat. Res. 20, 21, 43–55 (1967).

    Google Scholar 

  • Clermont, Y.: Contractile elements in the limiting membrane of the seminiferous tubules of the rat. Exp. Cell Res. 15, 438–440 (1958).

    Google Scholar 

  • Ebner, V. von: Männliche Geschlechtsorgane. In: Handbuch der Gewebelehre des Menschen, Bd. III, 6. Aufl., S. 402–505, hrsg. von A. Koelliker. Leipzig: Engelmann 1902.

    Google Scholar 

  • Ehinger, B., Falck, B., Sporrong, B.: Adrenergic fibres to the heart and to peripheral vessels. Bibl. anat. (Basel) 8, 35–45 (1967).

    Google Scholar 

  • El-Badawi, A., Schenk, E. A.: The distribution of cholinergic and adrenergic nerves in the mammalian epididymis. A comparative histochemical study. Amer. J. Anat. 121, 1–14 (1967).

    Google Scholar 

  • Falck, B., Owman, Ch.: A detailed methodological description of the fluorescence method for the cellular demonstration of biogenic monoamines. Acta Univ. Lund. II, 7, 1–23 (1965).

    Google Scholar 

  • Furness, J. B., Campbell, G. R., Gillard, S. M., Malmfors, T., Cobb, J. L. S., Burnstock, G.: Cellular studies of sympathetic denervation produced by 6-hydroxydopamine in the vas deferens. J. Pharmacol. exp. Ther. 174, 111–122 (1970).

    Google Scholar 

  • —, Iwayama, T.: Terminal axons ensheathed in smooth muscle cells of the vas deferens. Z. Zellforsch. 113, 259–270 1971).

    Google Scholar 

  • Goerttler, K.: Die Konstruktion der Wand des menschlichen Samenleiters und seine funktionelle Bedeutung. Morph. Jb. 74, 550–580 (1934).

    Google Scholar 

  • Häggendal, J.: An improved method for fluorimetric determination of small amounts of adrenaline and noradrenaline in plasma and tissues. Acta physiol. scand. 59, 242–245 (1963).

    Google Scholar 

  • Heidenhain, M., Werner, F.: Über die Epithelzellen des Corpus epididymidis beim Menschen. Z. Anat. Entwickl.-Gesch. 72, 556–608 (1924).

    Google Scholar 

  • Holman, M. E.: Junction potentials in smooth muscle. In: Smooth muscle, ed. by E. Bülbring, A. F. Brading, A. W. Jones and T. Tomita, p. 244–288. London: Edw. Arnold (Publ. Ltd.) 1970.

    Google Scholar 

  • Holstein, A.-F.: Muskulatur and Motilität des Nebenhodens beim Kaninchen. Z. Zellforsch. 76, 498–510 (1967).

    Google Scholar 

  • —: Morphologische Studien am Nebenhoden des Menschen. Zwanglose Abhandlungen aus dem Gebiet der normalen und pathologischen Anatomie. Hrsg. von W. Bargmann und W. Doerr, Heft 20. Stuttgart: G. Thieme 1969.

    Google Scholar 

  • Ito, S., Winchester, R. J.: The fine structure of the gastric mucosa in the bat. J. Cell Biol. 16, 541–578 (1963).

    Google Scholar 

  • Iversen, L. L.: The uptake and storage of noradrenaline in sympathetic nerves. Cambridge: University Press 1967.

    Google Scholar 

  • Iwayama, T., Furness, J. B., Burnstock, G.: Dual adrenergic and cholinergic innervation of the cerebral arteries of the rat. An ultrastructural study. Circulat. Res. 26, 635–646 (1970).

    Google Scholar 

  • Kagayama, M., Irisawa, S., Shirai, M., Madsushita, K.: Contractile cells in the tissue surrounding the seminiferous tubule. Jap. J. Urol. 56, 842–847 (1965).

    Google Scholar 

  • Keyserlingk, D.: Ultrastruktur glycerinextrahierter Dünndarmmuskelzellen der Ratte vor und nach Kontraktion. Z. Zellforsch. 111, 559–571 (1970).

    Google Scholar 

  • Lane, B. P.: Alterations in the cytologic detail of intestinal smooth muscle cells in various stages of contraction. J. Cell Biol. 27, 199–213 (1965).

    Google Scholar 

  • Langer, S. Z.: The metabolism of (3H) noradrenaline released by electrical stimulation from the isolated nictitating membrane of the cat, and from the vas deferens of the rat. J. Physiol. (Lond.) 208, 515–546 (1970).

    Google Scholar 

  • Lanz, T. von: Über Bau und Funktion des Nebenhodens und seine Abhängigkeit von der Keimdrüse. Z. Anat. Entwickl.-Gesch. 80, 177–282 (1926).

    Google Scholar 

  • Leeson, C. R.: Localization of alkaline phosphatase in the submaxillary gland of the rat. Nature (Lond.) 178, 858 (1956).

    Google Scholar 

  • Lowy, J., Small, J. V.: The organization of myosin and actin in vertebrate smooth muscle. Nature (Lond.) 227, 46–51 (1970).

    Google Scholar 

  • Luft, J. H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961).

    Google Scholar 

  • Merrilees, N. C. R.: The nervous environment of individual smooth muscle cells of the guinea-pig vas deferens. J. Cell Biol. 37, 794–817 (1968).

    Google Scholar 

  • —, Burnstock, G., Holman, M. E.: Correlation of fine structure and physiology of the innervation of smooth muscle in the guinea-pig vas deferens. J. Cell Biol. 19, 529–550 (1963).

    Google Scholar 

  • Murakami, M.: Elektronenmikroskopische Untersuchungen am interstitiellen Gewebe des Rattenhodens, unter besonderer Berücksichtigung der Leydigschen Zwischenzellen. Z. Zellforsch. 72, 239–256 (1966).

    Google Scholar 

  • Muratori, G.: Osservazioni preliminari sull'azione dell' adrenalina e dell'acetylcolina sui movimenti del canale dell' epididimo del ratto. Boll. Soc. ital. Biol. sper. 32, 248–249 (1956).

    Google Scholar 

  • —: Les mouvements normales et sous l'action de l'adrénaline et de Pacétylcholine du canal de l'épididyme du rat. Acta anat. (Basel) 47, 393 (1961).

    Google Scholar 

  • —, Contro, S.: Osservazioni sui movimenti del canale dell'epididymo. Boll. Soc. ital. Biol. sper. 27, 538–539 (1951).

    Google Scholar 

  • Nagel, A.: Das elastisch-muskulöse System der Tunica dartos und seine Beziehungen zum Blutgefäßnetz. Gegenbaurs morph. Jb. 83, 201–229 (1939).

    Google Scholar 

  • Nickerson, M.: Drugs inhibiting adrenergic nerves and structures innervated by them. In: The pharmacological basis of therapeutics, ed. by L. S. Goodman and A. Gilman, 4th ed., p. 549–584. London-Toronto: Macmillan Company 1970.

    Google Scholar 

  • Norberg, K. A., Risley, P. L., Ungerstedt, U.: Adrenergic innervation of the male reproductive ducts in some mammals. I. The distribution of adrenergic nerves. Z. Zellforsch. 76, 278–286 (1967).

    Google Scholar 

  • Owman, Ch., Sjöstrand, N. O.: Short adrenergic neurons and catecholamine-containing cells in vas deferens and accessory male genital glands of different mammals. Z. Zellforsch. 66, 300–320 (1965).

    Google Scholar 

  • Pabst, R.: Untersuchungen über Bau und Funktion des menschliehen Samenleiters. Z. Anat. Entwickl.-Gesch. 129, 154–176 (1969).

    Google Scholar 

  • —, Lippert, H.: Untersuchungen zu Bau und Funktion der Muskelwand des Ductus deferens. Anat. Anz. (Erg.-Bd.) 126, 543–553 (1970).

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    Google Scholar 

  • Risley, P. L.: The contractile behaviour in vivo of the ductus epididymidis and vasa efferentia of the rat. Anat. Rec. 130, 471 (1958).

    Google Scholar 

  • —, Velde, R. L. van de: Contractility of the ductus epididymidis in new born male rats, and histogenesis of smooth muscles in the Wolffian duct. Anat. Rec. 134, 629 (1959).

    Google Scholar 

  • Ross, M. H., Long, J. R.: Contractile cells in human seminiferous tubules. Science 153, 1271–1273 (1966).

    Google Scholar 

  • Ross, R., Bornstein, P.: Elastic fibres in the body. Sci. Amer. 224, 44–52 (1971).

    Google Scholar 

  • Schmidt, F. C.: Licht- und elektronenmikroskopische Untersuchungen am menschlichen Hoden und Nebenhoden. Z. Zellforsch. 63, 707–727 (1969).

    Google Scholar 

  • Scott, B. L., Pease, D. C.: Electron microscopy of the salivary and lacrimal glands of the rat. Amer. J. Anat. 104, 115–162 (1959).

    Google Scholar 

  • Shear, M.: Histochemical localization of alkaline phosphatase and adenosine triphosphatase in the myoepithelial cells of rat salivary glands. Nature (Lond.) 203, 770 (1964).

    Google Scholar 

  • Shore, P. A., Olin, J. S.: Identification and chemical assay of norepinephrine in brain and other tissues. J. Pharmacol. exp. Ther. 122, 295–300 (1958).

    Google Scholar 

  • Sjöstrand, N. O.: The adrenergic innervation of the vas deferens and the accessory male genital glands. Acta physiol. scand. 65, Suppl. 257, 1–82 (1965).

    Google Scholar 

  • —, Swedin, G.: Effect of reserpine on the noradrenaline content of the vas deferens and the seminal vesicles compared with the submaxillary gland and the heart of the rat. Acta physiol. scand. 72, 370–377 (1968).

    Google Scholar 

  • Tamarin, A.: Myoepithelium of the rat submaxillary gland. J. Ultrastruct. Res. 16, 320–338 (1966).

    Google Scholar 

  • Vanwelkenhuysen, P.: La motilité du canal déférent. Acta urol. belg. 34, 385–466 (1966).

    Google Scholar 

  • Velde, R. L. van de: The origin and development of smooth muscle and contractility in the ductus epididymidis of the rat. J. Embryol. exp. Morph. 11, 369–382 (1963).

    Google Scholar 

  • Venable, J. H., Coggeshall, R.: A simplified lead citrate stain for use in electron microscopy. J. Cell Biol. 25, 407–408 (1965).

    Google Scholar 

  • Yamauchi, A., Burnstock, G.: Post-natal development of the innervation of the mouse vas deferens. A fine structural study. J. Anat. (Lond.) 104, 17–32 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. Drs. h.c. W. Bargmann with the best wishes for his 65th birthday.

Supported by grants from the Deutsche Forschungsgemeinschaft.

Supported by a grant from Ford Foundation (No. 68-383), New York.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumgarten, H.G., Holstein, A.F. & Rosengren, E. Arrangement, ultrastructure, and adrenergic innervation of smooth musculature of the ductuli efferentes, ductus epididymidis and ductus deferens of man. Z. Zellforsch. 120, 37–79 (1971). https://doi.org/10.1007/BF00331243

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00331243

Key-Words

Navigation