Skip to main content

Advertisement

Log in

Functional nitrergic innervation of smooth muscle structures in the mucosa of pig lower urinary tract

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Neurally released nitric oxide (NO) functions as an inhibitory neurotransmitter of urethral but not detrusor smooth muscles while relaxing bladder vasculature and muscularis mucosae (MM). Here, the distribution of nitrergic nerves was examined in the mucosa of pig lower urinary tract using immunohistochemistry, and their vasodilatory functions were studied by measuring arteriolar diameter changes. Properties of smooth muscle cells in the lamina propria (SMC-LP) of urethra and trigone were also investigated using florescence Ca2+ imaging. In the bladder mucosa, neuronal nitric oxide synthase (nNOS)–immunoreactive nitrergic fibres projected to suburothelial arterioles and venules. Perivascular nitrergic nerves were intermingled with but distinct from tyrosine hydroxylase (TH)–immunoreactive sympathetic or calcitonin gene–related peptide (CGRP)–immunoreactive afferent nerves. MM receive a nitrergic but not sympathetic or afferent innervation. In the mucosa of urethra and trigone, nitrergic nerves were in close apposition with sympathetic or afferent nerves around suburothelial vasculature but did not project to SMC-LP. In suburothelial arterioles of bladder and urethra, N ω-nitro-L-arginine (L-NA, 100 μM), an NOS inhibitor, enhanced electrical field stimulation (EFS)–induced sympathetic vasoconstrictions, while tadalafil (10 nM), a phosphodiesterase type 5 (PDE5) inhibitor, suppressed the vasoconstrictions. SMC-LP developed asynchronous spontaneous Ca2+ transients without responding to EFS. The spontaneous Ca2+ transients were enhanced by acetylcholine (1 μM) and diminished by noradrenaline (1 μM) but not SIN-1 (10 μM), an NO donor. In the lower urinary tract mucosa, perivascular nitrergic nerves appear to counteract the sympathetic vasoconstriction to maintain the mucosal circulation. Bladder MM but not SMC-LP receive an inhibitory nitrergic innervation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

α-SMA:

α-Smooth muscle actin

ACh:

Acetylcholine

cGMP:

Cyclic guanosine monophosphate

CGRP:

Calcitonin gene–related peptide

DSM:

Detrusor smooth muscle

EFS:

Electrical field stimulation

LUTS:

Lower urinary tract symptoms

L-NA:

N ω-nitro-L-arginine

MM:

Muscularis mucosae

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

PDE5:

Phosphodiesterase type 5

PSS:

Physiological salt solution

SMC:

Smooth muscle cell

SMC-LP:

Smooth muscle cell in the lamina propria

TH:

Tyrosine hydroxylase

References

  • Brading AF (1999) The physiology of the mammalian urinary outflow tract. Exp Physiol 84:215–221

    Article  CAS  PubMed  Google Scholar 

  • Bustamante S, Orensanz LM, Recio P, Carballido J, García-Sacristán A, Prieto D, Hernández M (2010) Functional evidence of nitrergic neurotransmission in the human urinary bladder neck. Neurosci Lett 477:91–94

    Article  CAS  PubMed  Google Scholar 

  • Christensen KL, Mulvany MJ (1993) Mesenteric arcade arteries contribute substantially to vascular resistance in conscious rats. J Vasc Res 30:73–79

    Article  CAS  PubMed  Google Scholar 

  • Davis MJ, Ferrer PN, Gore RW (1986) Vascular anatomy and hydrostatic pressure profile in the hamster cheek pouch. Am J Physiol 250:H291–H303

    CAS  PubMed  Google Scholar 

  • Dixon JS, Gosling JA (1983) Histology and fine structure of the muscularis mucosae of the human urinary bladder. J Anat 136:265–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fenger-Gron J, Mulvany MJ, Christensen KL (1997) Intestinal blood flow is controlled by both feed arteries and microcirculatory resistance vessels in freely moving rats. J Physiol 498:215–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filippi S, Morelli A, Sandner P, Fibbi B, Mancina R, Marini M, Gacci M, Vignozzi L, Vannelli GB, Carini M, Forti G, Maggi M (2007) Characterization and functional role of androgen-dependent PDE5 activity in the bladder. Endocrinology 148:1019–1029

    Article  CAS  PubMed  Google Scholar 

  • Forgue ST, Patterson BE, Bedding AW, Payne CD, Phillips DL, Wrishko RE, Mitchell MI (2006) Tadalafil pharmacokinetics in healthy subjects. Br J Clin Pharmacol 61:280–288

    Article  CAS  PubMed  Google Scholar 

  • Gacci M, Andersson KE, Chapple C, Maggi M, Mirone V, Oelke M, Porst H, Roehrborn C, Stief C, Giuliano F (2016) Latest evidence on the use of phosphodiesterase type 5 inhibitors for the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia. Eur Urol 70:124–133

    Article  CAS  PubMed  Google Scholar 

  • Greenland JE, Brading AF (1996) Urinary bladder blood flow changes during the micturition cycle in a conscious pig model. J Urol 156:1858–1861

    Article  CAS  PubMed  Google Scholar 

  • Greenland JE, Dass N, Brading AF (1996) Intrinsic urethral closure mechanisms in the female pig. Scand J Urol Nephrol Suppl 179:75–80

    CAS  PubMed  Google Scholar 

  • Hashitani H, Mitsui R, Miwa-Nishimura K, Lam M (2018) Role of capillary pericytes in the integration of spontaneous Ca2+ transients in the suburothelial microvasculature in situ of the mouse bladder. J Physiol 596:3531–3552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashitani H, Takano H, Fujita K, Mitsui R, Suzuki H (2011) Functional properties of suburothelial microvessels in the rat bladder. J Urol 185:2382–2391

    Article  PubMed  Google Scholar 

  • Hatanaka Y, Hobara N, Honghua J, Akiyama S, Nawa H, Kobayashi Y, Takayama F, Gomita Y, Kawasaki H (2006) Neuronal nitric-oxide synthase inhibition facilitates adrenergic neurotransmission in rat mesenteric resistance arteries. J Pharmacol Exp Ther 316:490–497

    Article  CAS  PubMed  Google Scholar 

  • Heppner TJ, Layne JJ, Pearson JM, Sarkissian H, Nelson MT (2011) Unique properties of muscularis mucosae smooth muscle in guinea pig urinary bladder. Am J Physiol Regul Integr Comp Physiol 301:R351–R362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heppner TJ, Tykocki NR, Hill-Eubanks D, Nelson MT (2016) Transient contractions of urinary bladder smooth muscle are drivers of afferent nerve activity during filling. J Gen Physiol 147:323–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isogai A, Lee K, Mitsui R, Hashitani H (2016) Functional coupling of TRPV4 channels and BK channels in regulating spontaneous contractions of the guinea pig urinary bladder. Pflugers Arch 468:1573–1585

    Article  CAS  PubMed  Google Scholar 

  • Keast JR, Kawatani M (1994) Extensive distribution of NADPH diaphorase activity in the nerve supply of the cat lower urinary tract. J Auton Nerv Syst 50:161–169

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Isogai A, Antoh M, Kajioka S, Eto M, Hashitani H (2018) Role of K+ channels in regulating spontaneous activity in the muscularis mucosae of guinea pig bladder. Eur J Pharmacol 818:30–37

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Mitsui R, Kajioka S, Naito S, Hashitani H (2016) Role of PTHrP and Sensory Nerve peptides in regulating contractility of muscularis mucosae and detrusor smooth muscle in the guinea pig bladder. J Urol 196:1287–1294

    Article  CAS  PubMed  Google Scholar 

  • Lies B, Groneberg D, Friebe A (2013) Correlation of cellular expression with function of NO-sensitive guanylyl cyclase in the murine lower urinary tract. J Physiol 591:5365–5375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattiasson A, Andersson KE, Sjögren C (1985) Contractant and relaxant properties of the female rabbit urethral submucosa. J Urol 133:304–310

    Article  CAS  PubMed  Google Scholar 

  • Mitsui R, Hashitani H (2013) Immunohistochemical characteristics of suburothelial microvasculature in the mouse bladder. Histochem Cell Biol 140:189–200

    Article  CAS  PubMed  Google Scholar 

  • Mitsui R, Lee K, Uchiyama A, Hayakawa S, Kinoshita F, Kajioka S, Eto M, Hashitani H (2020) Contractile elements and their sympathetic regulations in the pig urinary bladder: a species and regional comparative study. Cell Tissue Res 379:373–387

    Article  CAS  PubMed  Google Scholar 

  • Morelli A, Filippi S, Comeglio P, Sarchielli E, Chavalmane AK, Vignozzi L, Fibbi B, Silvestrini E, Sandner P, Gacci M, Carini M, Vannelli GB, Maggi M (2010) Acute vardenafil administration improves bladder oxygenation in spontaneously hypertensive rats. J Sex Med 7:107–120

    Article  CAS  PubMed  Google Scholar 

  • Moro C, Tajouri L, Chess-Williams R (2013) Adrenoceptor function and expression in bladder urothelium and lamina propria. Urology 81:211.e1–7

    Article  Google Scholar 

  • Moro C, Uchiyama J, Chess-Williams R (2011) Urothelial/lamina propria spontaneous activity and the role of M3 muscarinic receptors in mediating rate responses to stretch and carbachol. Urology 78:1442.e9–15

    Article  Google Scholar 

  • Oger S, Behr-Roussel D, Gorny D, Lebret T, Validire P, Cathelineau X, Alexandre L, Giuliano F (2010) Signalling pathways involved in sildenafil-induced relaxation of human bladder dome smooth muscle. Br J Pharmacol 160:1135–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parlani M, Conte B, Manzini S (1993) Nonadrenergic, noncholinergic inhibitory control of the rat external urethral sphincter: involvement of nitric oxide. J Pharmacol Exp Ther 265:713–719

    CAS  PubMed  Google Scholar 

  • Persson K, Alm P, Johansson K, Larsson B, Andersson KE (1993) Nitric oxide synthase in pig lower urinary tract: immunohistochemistry, NADPH diaphorase histochemistry and functional effects. Br J Pharmacol 110:521–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson K, Alm P, Johansson K, Larsson B, Andersson KE (1995) Co-existence of nitrergic, peptidergic and acetylcholine esterase-positive nerves in the pig lower urinary tract. J Auton Nerv Syst 52:225–236

    Article  CAS  PubMed  Google Scholar 

  • Persson K, Alm P, Uvelius B, Andersson KE (1998) Nitrergic and cholinergic innervation of the rat lower urinary tract after pelvic ganglionectomy. Am J Physiol 274:R389–R397

    CAS  PubMed  Google Scholar 

  • Persson K, Andersson KE (1992) Nitric oxide and relaxation of pig lower urinary tract. Br J Pharmacol 106:416–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson K, Johansson K, Alm P, Larsson B, Andersson KE (1997) Morphological and functional evidence against a sensory and sympathetic origin of nitric oxide synthase-containing nerves in the rat lower urinary tract. Neuroscience 77:271–281

    Article  CAS  PubMed  Google Scholar 

  • Shimizu Y, Mochizuki S, Mitsui R, Hashitani H (2014) Neurohumoral regulation of spontaneous constrictions in suburothelial venules of the rat urinary bladder. Vascul Pharmacol 60:84–94

    Article  CAS  PubMed  Google Scholar 

  • Smet PJ, Jonavicius J, Marshall VR, de Vente J (1996) Distribution of nitric oxide synthase-immunoreactive nerves and identification of the cellular targets of nitric oxide in guinea-pig and human urinary bladder by cGMP immunohistochemistry. Neuroscience 71:337–348

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Mitsui R, Oishi M, Passlick S, Jabs R, Steinhäuser C, Tanaka KF, Hashitani H (2021) NO-mediated signal transmission in bladder vasculature as a therapeutic target of PDE5 inhibitors. Rodent Model Studies Br J Pharmacol 178:1073–1094

    Article  CAS  PubMed  Google Scholar 

  • Toda N, Okamura T (1990) Mechanism underlying the response to vasodilator nerve stimulation in isolated dog and monkey cerebral arteries. Am J Physiol 259:H1511–H1517

    CAS  PubMed  Google Scholar 

  • Toda N, Okamura T (2015) Recent advances in research on nitrergic nerve-mediated vasodilatation. Pflugers Arch 467:1165–1178

    Article  CAS  PubMed  Google Scholar 

  • Werkström V, Persson K, Ny L, Bridgewater M, Brading AF, Andersson KE (1995) Factors involved in the relaxation of female pig urethra evoked by electrical field stimulation. Br J Pharmacol 116:1599–1604

    Article  PubMed  PubMed Central  Google Scholar 

  • Zygmunt PK, Persson K, Alm P, Larsson B, Andersson KE (1993) The L-arginine/nitric oxide pathway in the rabbit urethral lamina propria. Acta Physiol Scand 148:431–439

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr Richard Lang (Monash University) for critical reading of the manuscript.

Funding

The present study was partly supported by Grant-in-Aid for Scientific Research (C) from Japan Society for Promotion of the Science to R.M. (No. 19K08426) and H.H. (No. 17K11187, 20K09564).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Retsu Mitsui.

Ethics declarations

Ethical approval

The experimental protocols used in the present study were approved by the animal experimentation ethics committee at Nagoya City University Graduate School of Medical Sciences (No. H-30 M-44).

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 Spontaneous Ca2+ transients in SMC-LP of the urethra corresponding to Ca2+ fluorescence images in Fig. 10a. (MP4 2561 KB)

Supplementary file2 Spontaneous Ca2+ transients in SMC-LP of the trigone corresponding to fluorescence images in Fig. 10b. (MP4 2200 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitsui, R., Chikada, Y., Arai, K. et al. Functional nitrergic innervation of smooth muscle structures in the mucosa of pig lower urinary tract. Cell Tissue Res 386, 513–531 (2021). https://doi.org/10.1007/s00441-021-03521-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03521-9

Keywords

Navigation