Skip to main content
Log in

Chromosome banding in Amphibia

IX. The polyploid karyotypes of Odontophrynus americanus and Ceratophrys ornata (Anura, Leptodactylidae)

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The somatic and meiotic chromosomes of the South American leptodactylid toads Odontophrynus americanus, Ceratophrys ornata, and C. cranwelli were analysed both with conventional staining and differential banding techniques. The karyotypes of O. americanus were tetraploid; those of C. ornata octaploid. Ceratophrys cranwelli is a diploid species whose karyotype displays great similarities with that of C. ornata. The high frequency of multivalent pairing configurations in the meioses of O. americanus and C. ornata indicate that these animals were of autopolyploid origin. The conventionally stained somatic chromosomes of O. americanus can be arranged into sets of four similar chromosomes (quartets); those of C. ornata, into sets of eight similar chromosomes (octets). The banding patterns revealed heterogeneity within some quartets of O. americanus, dividing each of them into two pairs of homologous chromosomes. In analogy, some octets of C. ornata can be subdivided into two quartets of chromosomes with homologous bands. These structural heterogeneities within the quartets and octets are interpreted as a “diploidization” of the polyploid karyotypes. Diploidization leads to genomes that are polyploid with respect to the amount of genetic material and diploid with respect to chromosomal characteristics and the level of gene expression. In tetraploid O. americanus, the number of nucleolus organizer regions (NORs) and their DNA content is proportional to the degree of ploidy. In contrast, up to eight NORs have been deleted in the octoploid C. ornata. These NOR losses are discussed as a possible reason for the reduction of genetic activity in polyploid genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arrighi FE, Saunders GF (1973) The relationship between repetitious DNA and constitutive heterochromatin with special reference to man. In: Pfeiffer RA (ed) Modern aspects of cytogenetics: constitutive heterochromatin in man. Symposia Medica Hoechst 6. Schattauer, Stuttgart, New York pp 113–133

    Google Scholar 

  • Barrio A, Pistol de Rubel D (1972) Encuesta cariotípica de poblaciones argentino-uruguayas de Odontophrynus americanus (Anura, Leptodactylidae) relacionada con otros rasgos taxonómicos. Physis 31:281–291

    Google Scholar 

  • Barrio A, Rinaldi de Chieri P (1970) Relaciones cariosistemáticas de los Ceratophryidae de la Argentina (Amphibia, Anura). Physis 30:321–329

    Google Scholar 

  • Beçak ML, Beçak W (1974) Diploidization in Eleutherodactylus (Leptodactylidae-Amphibia). Experientia 30:624–625

    Google Scholar 

  • Beçak W, Goissis G (1971) DNA and RNA content in diploid and tetraploid amphibians. Experientia 27:345–346

    Google Scholar 

  • Beçak W, Pueyo MT (1970) Gene regulation in the polyploid amphibian Odontophrynus americanus. Exp Cell Res 63:448–451

    Google Scholar 

  • Beçak ML, Beçak W, Rabello MN (1966) Cytological evidence of constant tetraploidy in the bisexual South American frog Odontophrynus americanus. Chromosoma 19:188–193

    Google Scholar 

  • Beçak ML, Beçak W, Rabello MN (1967) Further studies on polyploid amphibians (Ceratophrydidae). I. Mitotic and meiotic aspects. Chromosoma 22:192–201

    Google Scholar 

  • Beçak ML, Beçak W, Vizotto LD (1970) A diploid population of the polyploid amphibian Odontophrynus americanus and an artificial intraspecific triploid hybrid. Experientia 26:545–546

    Google Scholar 

  • Bogart JP (1967) Chromosomes of the South American amphibian family Ceratophridae with a reconsideration of the taxonomic status of Odontophrynus americanus. Can J Genet Cytol 9:531–542

    Google Scholar 

  • Bogart JP (1980) Evolutionary implications of polyploidy in amphibians and reptiles. In: Lewis WH (ed) Polyploidy: biological relevance. Plenum Press, New York London, pp 341–378

    Google Scholar 

  • Bogart JP, Wasserman AO (1972) Diploid-tetraploid cryptic species pairs: a possible clue to evolution by polyploidization in anuran amphibians. Cytogenetics 11:7–24

    Google Scholar 

  • Buys CHCM, Osinga J (1984) Selective staining of the same set of nucleolar phosphoproteins by silver and Giemsa. A combined biochemical and cytochemical study on staining of NORs. Chromosoma 89:387–396

    Google Scholar 

  • Couturier J, Dutrillaux B, Lejeune J (1973) Etude des fluorescences spécifique des bandes R et des bandes Q des chromosomes humains. CR Seances Acad Sci (III) 276:339–342

    Google Scholar 

  • Dutrillaux B (1975) Traitements discontinus par le BrdU et coloration par l'acridine orange: obtention des marquages R, Q et intermédiaires. Chromosoma 52:261–273

    Google Scholar 

  • Engel W, Schmidtke J (1975) Die Bedeutung von Genduplikationen für die Evolution der Wirbeltiere. In: Becker PE (ed) Humangenetik, Vol 1/3. Thieme, Stuttgart pp 618–654

    Google Scholar 

  • Ferrier V, Jaylet A (1978) Induction of triploidy in the newt Pleurodeles waltlii by heat shock or hydrostatic pressure. Interpretation of the different types of ploidy using a chromosomal marker. Chromosoma 69:47–63

    Google Scholar 

  • Gorham SW (1966) Liste der rezenten Amphibien und Reptilien. Ascaphidae, Leiopelmatidae, Pipidae, Discoglossidae, Pelobatidae, Leptodactylidae, Rhinophrynidae. In: Mertens R, Hennig W (eds) Das Tierreich 85. Walter de Gruyter, Berlin New York, pp 35–39

    Google Scholar 

  • Hennig W, Walker PMB (1970) Variations in the DNA from two rodent families (Cricetidae and Muridae). Nature 225:915–919

    Google Scholar 

  • King M (1980) C-banding studies on Australian hylid frogs: secondary constriction structure and the concept of euchromatin transformation. Chromosoma 80:191–217

    Google Scholar 

  • Leipoldt M (1983) Towards an understanding of the molecular mechanisms regulating gene expression during diploidization in phylogenetically polyploid lower vertebrates. Hum Genet 65:11–18

    Google Scholar 

  • Macgregor HC, Vlad M, Barnett L (1977) An investigation of some problems concerning nucleolus organizers in salamanders. Chromosoma 59:283–299

    Google Scholar 

  • Maher EP, Fox DP (1973) Multiplicity of ribosomal RNA genes in Vicia species with different nuclear DNA contents. Nature 245:170–172

    Google Scholar 

  • Mahony MJ, Robinson ES (1980) Polyploidy in the Australian leptodactylid frog genus Neobatrachus. Chromosoma 81:199–212

    Google Scholar 

  • Miller L, Brown DD (1969) Variation in the activity of nucleolar organizers and their ribosomal gene content. Chromosoma 28:430–444

    Google Scholar 

  • Miller L, Knowland J (1970) Reduction of ribosomal RNA synthesis and ribosomal RNA genes in a mutant of Xenpus laevis which organizes only a partial nucleolus. II. The number of ribosomal RNA genes in animals of different nuclear types. J Mol Biol 53:329–338

    Google Scholar 

  • Möritz C (1983) Parthenogenesis in the endemic Australian lizard Heteronotia binoei (Gekkonidae). Sience 220:735–737

    Google Scholar 

  • Müller WP (1977) Diplotene chromosomes of Xenopus hybrid oocytes. Chromosoma 59:273–282

    Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ohno S (1974) Protochordata, Cyclostomata and Pisces. In: John B (ed) Animal cytogenetics. Gebrüder Borntraeger, Berlin Stuttgart pp 1–92

    Google Scholar 

  • Ohno S, Wolf U, Atkin NB (1968) Evolution from fish to mammals by gene duplication. Hereditas 59:169–187

    Google Scholar 

  • Pedersen RA (1971) DNA content, ribosomal gene multiplicity, and cell size in fish. J Exp Zool 177:65–78

    Google Scholar 

  • Ruiz IRG, Sonia M, Beçak W (1981) Nucleolar organizer regions and constitutive heterochromatin in polyploid species of the genus Odontophrynus (Amphibia, Anura). Cytogenet Cell Genet 29:84–98

    Google Scholar 

  • Schempp W, Schmid M (1981) Chromosome banding in Amphibia. VI. BrdU-replication patterns in Anura and demonstration of XX/XY sex chromosomes in Rana esculenta. Chromosoma 83:697–710

    Google Scholar 

  • Schmid M (1978a) Chromosome banding in Amphibia. I. Constitutive heterochromatin and nucleolus organizer regions in Bufo and Hyla. Chromosoma 66:361–388

    Google Scholar 

  • Schmid M (1978b) Chromosome banding in Amphibia. II. Constitutive heterochromatin and nucleolus organizer regions in Ranidae, Microhylidae and Rhacophoridae. Chromosoma 68:131–148

    Google Scholar 

  • Schmid M (1980a) Chromosome banding in Amphibia. IV. Differentiation of GC- and AT-rich chromosome regions in Anura. Chromosoma 77:83–103

    Google Scholar 

  • Schmid M (1980b) Chromosome evolution in Amphibia. In: Müller H (ed) Cytogenetics of vertebrates. Birkhäuser, Basel-Boston-Stuttgart, pp 4–27

    Google Scholar 

  • Schmid M (1982) Chromosome banding in Amphibia. VII. Analysis of the structure and variability of NORs in Anura. Chromosoma 87:327–344

    Google Scholar 

  • Schmidtke J, Engel W (1975) Gene action in fish of tetraploid origin. I. Cellular and biochemical parameters in cyprinid fish. Biochem Genet 13:45–51

    Google Scholar 

  • Schmidtke J, Beçak W, Engel W (1976) The reduction of genic activity in the tetraploid amphibian Odontophrynus americanus is not due to loss of ribosomal DNA. Experientia 32:27–28

    Google Scholar 

  • Schmidtke J, Zenzes MT, Dittes H, Engel W (1975) Regulation of cell size in fish of tetraploid origin. Nature 254:426–427

    Google Scholar 

  • Schnedl W, Breitenbach M, Mikelsaar A-V, Stranzinger G (1977) Mithramycin and DIPI: a pair of fluorochromes specific for GC- and AT-rich DNA respectively. Hum Genet 36:299–305

    Google Scholar 

  • Schwantes MLB (1974) Estudo comparativo de dez enzimas num sistema diplo-tetraplóide do gênero Odontophrynus (Ceratophrydidae-Anura). PhD thesis, Sao Paulo University, Sao Paulo

    Google Scholar 

  • Schweizer D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58:307–324

    Google Scholar 

  • Siegel A, Lightfood D, Ward OG, Keener S (1973) DNA complementary to ribosomal RNA: relation between genomic proportion and ploidy. Science 179:682–683

    Google Scholar 

  • Thiébaud CH (1979a) The intra-nucleolar localization of amplified rDNA in Xenopus laevis oocytes. Chromosoma 73:29–36

    Google Scholar 

  • Thiébaud CH (1979b) Quantitative determination of amplified rDNA and its distribution during oogenesis in Xenopus laevis. Chromosoma 73:37–44

    Google Scholar 

  • Tymowska J, Fischberg M (1973) Chromosome complements of the genus Xenopus. Chromosoma 44:335–342

    Google Scholar 

  • Tymowska J, Fischberg M (1980) The karyotype of Xenopus wittei Tinsley, Kobel and Fischberg, another tetraploid anuran species (Pipidae). Cytogenet Cell Genet 28:208–212

    Google Scholar 

  • Tymowska J, Fischberg M (1982) A comparison of the karyotype, constitutive heterochromatin, and nucleolar organizer regions of the new tetraploid species Xenopus epitropicalis Fischberg and Picard with those of Xenopus tropicalis Gray (Anura, Pipidae). Cytogenet Cell Genet 34:149–157

    Google Scholar 

  • Tymowska J, Fischberg M, Tinsley RC (1977) The karyotype of the tetraploid species Xenopus vestitus Laurent (Anura: Pipidae). Cytogenet Cell Genet 19:344–354

    Google Scholar 

  • Walker PMB (1968) How different are the DNA's from related animals? Nature 219:228–232

    Google Scholar 

  • Weisblum B (1973) Fluorescent probes of chromosomal DNA structure: Three classes of acridines. Cold Spring Harbor Symp Quant Biol 38:441–449

    Google Scholar 

  • Weisblum B, de Haseth PL (1972) Quinacrine, a chromosome stain specific for deoxyadenylate-deoxythymidylate-rich regions in DNA. Proc Natl Acad Sci USA 69:629–632

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Prof. Dr. Hans Bauer on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, M., Haaf, T. & Schempp, W. Chromosome banding in Amphibia. Chromosoma 91, 172–184 (1985). https://doi.org/10.1007/BF00328215

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00328215

Keywords

Navigation