Skip to main content

Biological Effects of Uranium and Its Decay Products on Soil Microbes, Plants, and Humans

  • Chapter
  • First Online:
Plant Microbe Interface

Abstract

In this atomic age, exposure to toxins in the environment ranges from radioactive heavy metals to chemical pesticides, and detoxification has become an issue of considerable importance. Recently, many parts of the world have been contaminated with radioactive waste from depleted uranium bombs and projectiles including the Arabian Gulf, Iraq, Syria, Bosnia, Serbia, and Afghanistan. In addition, other areas of the globe have been contaminated by nuclear testing sites and accidents at nuclear power plants involving radioactive uranium and its decay products. There are three naturally occurring uranium isotopes that are of major significance with regard to mining of this element and the nuclear industry. These include uranium-238 (U-238), which comprises the majority of this element in the Earth’s crust, uranium-235 (U-235), and uranium-234 (U-234), which together comprise a much smaller portion. The half-lives of these isotopes are approximately 4500 million years, 703 million years, and 246,000 years, respectively. The transfer of radionuclides of the uranium decay series through the environment is important for assessing the impact of nuclear weapons use, nuclear power plant leaks, and the mining and milling of uranium ores. The pathway from soil through plants to humans contributes significantly to the overall radiation dose. The transfer of mobilized radionuclides within the environment is determined by weathering rate, which, in turn, depends on particle composition and chemical conditions such as pH of the soil after deposition. Specific geographical sites that have been contaminated with uranium attract specific bacterial species that display resistance to the metal. Moreover, various plant species exhibit substantial differences in the soil-plant transfer factor for uranium and other related radionuclides. The biological effects of environmental radionuclides in humans (particularly depleted uranium) have been documented as part of the Gulf War syndrome and Balkan syndrome and comprise a complex set of seemingly unrelated symptoms. Some of these include incapacitating fatigue, musculoskeletal and joint pains, headaches, neuropsychiatric disorders, confusion, visual problems, changes of gait, loss of memory, lymphadenopathies, respiratory impairment, impotence, and urinary tract morphological and functional alterations. Moreover, the overall incidence of breast and lung cancer, leukemia, and lymphoma has doubled or tripled in certain areas of Iraq contaminated with depleted uranium during the Gulf War. An association with lung cancer has also been found in uranium miners. Thus, soil remediation, plant selection, phytoremediation, and human detoxification are the main issues to be considered in relation to environmental contamination with uranium and its decay products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akob DM, Mills HJ, Kostka JE (2007) Metabolically active microbial communities in uranium-contaminated subsurface sediments. FEMS Microbiol Ecol 59:95–107

    Article  CAS  PubMed  Google Scholar 

  • Alaani S, Savabieasfahani M, Tafash M, Manduca P (2011) Four polygamous families with congenital birth defects from Fallujah, Iraq. Int J Environ Res Public Health 8:89–96

    Article  PubMed  Google Scholar 

  • Araneta MRG, Moore CA, Olney RS, Edmonds LD, Karcher JA, McDonough C, Hiliopoulos KM, Schlangen KM, Gray GC (1997) Goldenhar syndrome among infants born in military hospitals to Gulf War veterans. Teratology 56:244–251

    Article  CAS  PubMed  Google Scholar 

  • Araneta MRG, Destiche DA, Schlangen KM, Merz RD, Forrester MB, Gray GC (2000) Birth defects prevalence among infants of Gulf war veterans born in Hawaii, 1989–1993. Teratology 62:195–204

    Article  CAS  PubMed  Google Scholar 

  • Araneta MR, Schlangen KM, Edmonds LD, Destiche DA, Merz RD, Hobbs CA, Flood TJ, Harris JA, Krishnamurti D, Gray GC (2003) Prevalence of birth defects among infants of Gulf War veterans in Arkansas, Arizona, California, Georgia, Hawaii, and Iowa, 1989–1993. Birth Defects Res A Clin Mol Teratol 67:246–260

    Article  CAS  PubMed  Google Scholar 

  • Barillet S, Adam C, Palluel O, Devaux A (2007) Bioaccumulation, oxidative stress, and neurotoxicity in Danio rerio exposed to different isotopic compositions of uranium. Environ Toxicol Chem 26:497–505

    Article  CAS  PubMed  Google Scholar 

  • Bassett SH, Frenkel A, Cedars N, Van Alstine H, Waterhouse C, Cusson K (1948) The excretion of hexavalent uranium following intravenous administration. II. Studies on human subjects. The University of Rochester, Rochester, URB37, Washington, DC

    Book  Google Scholar 

  • Bertell R (1999, May) Gulf war veterans and depleted uranium. Hague peace conference

    Google Scholar 

  • Bleise A, Danesi PR, Burkart W (2003) Properties, use and health effects of depleted uranium (DU): a general overview. J Environ Radioact 64:93–112

    Article  CAS  PubMed  Google Scholar 

  • Boryko A, Skwarzec B, Fabisiak J (2010) Bioaccumulation of uranium 234U and 238U in marine birds. J Radioanal Nucl Chem 284:165–172

    Article  CAS  Google Scholar 

  • Briner WE (2006) The evolution of depleted uranium as an environmental risk factor: lessons from other metals. Int J Environ Res Public Health 3:129–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busby C, Hamdan M, Ariabi E (2010) Cancer, infant mortality and birth sex-ratio in Fallujah, Iraq 2005–2009. Int J Environ Res Public Health 7:2828–2837

    Article  PubMed  PubMed Central  Google Scholar 

  • Cannova JV (1998) Multiple giant cell tumors with Gulf War syndrome. Mil Med 163:184–185

    Article  CAS  PubMed  Google Scholar 

  • Cardenas E, Wu W-M, Leigh MB, Carley J, Carroll S, Gentry T, Luo J, Watson D, Gu B, Ginder-Vogel M, Kitanidis PK, Jardine PM, Zhou J, Criddle CS, Marsh TL, Tiedje JM (2008) Microbial communities in contaminated sediments, associated with bioremediation of uranium to submicromolar levels. Appl Environ Microbiol 74:3718–3729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SB, Zhu YG, Hu QH (2005) Soil to plant transfer of 238U, 226Ra and 232Th on a uranium mining-impacted soil from southeastern China. J Environ Radioact 82:223–236

    Article  CAS  PubMed  Google Scholar 

  • Dean W (2018a) Chelation with EDTA: a food additive with many remarkable properties. Anti-aging and life extension medicine

    Google Scholar 

  • Dean W (2018b) DMSA and detoxifying heavy metals. Anti-aging and life extension medicine

    Google Scholar 

  • Denmeade SR, Isaacs JT (1996) Programmed cell death (Apoptosis) and cancer chemotherapy. Cancer Control 3:303–309

    Article  CAS  PubMed  Google Scholar 

  • Domingo JL (2001) Reproductive and developmental toxicity of natural and depleted uranium: a review. Reprod Toxicol 15:603–609

    Article  CAS  PubMed  Google Scholar 

  • Doyle P, Maconochie N, Davies G, Maconochie I, Pelerin M, Prior S, Lewis S (2004) Miscarriage, stillbirth and congenital malformation in the offspring of UK veterans of the first Gulf war. Int J Epidemiol 33:74–86

    Article  PubMed  Google Scholar 

  • Dublineau I, Grison S, Baudelin C, Dudoignon N, Souidi M, Marquette C, Paquet F, Aigueperse J, Gourmelon P (2005) Absorption of uranium through the entire gastrointestinal tract of the rat. Int J Radiat Biol 81:473–482

    Article  CAS  PubMed  Google Scholar 

  • Durakovic A (2001) On depleted uranium: Gulf war and Balkan syndrome. Croat Medl J 42:130–134

    CAS  Google Scholar 

  • Durakovic A (2003) Undiagnosed illnesses and radioactive warfare. Croat Medl J 44:520–532

    Google Scholar 

  • Durakovic A (2005) The quantitative analysis of uranium isotopes in the urine of the civilian population of eastern Afghanistan after operation enduring freedom. Mil Med 170:277–284

    Article  PubMed  Google Scholar 

  • Dushenkov S (2003) Trends in phytoremediation of radionuclides. Plant Soil 249(1):167–175

    Article  CAS  Google Scholar 

  • Eapen S, D’Souza SF (2004) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114

    Article  PubMed  CAS  Google Scholar 

  • Echevarria G, Sheppard MI, Morel J-L (2001) Effect of pH on the sorption of uranium in soils. J Environ Radioact 53:257–264

    Article  CAS  PubMed  Google Scholar 

  • European Commission Brussels, 17.3.2016 SWD (2016) SWD 2016_64_F1_IMPACT_ASSESMENT_EN_V6_P2_839082.pdf

    Google Scholar 

  • Fan M, Thongsri T, Axe L, Tyson TA (2005) Using a probabilistic approach in an ecological risk assessment simulation tool: test case for depleted uranium (DU). Chemosphere 60:111–125

    Article  CAS  PubMed  Google Scholar 

  • Fathi RY, Al-Salih HS, Matti LY, Godbold DL (2013) Environmental pollution by depleted uranium in Iraq with special reference to Mosul and possible effects on cancer and birth defect rates. Med Confl Surviv 29:7–25

    Article  PubMed  Google Scholar 

  • Fields MW, Yan T, Rhee S-K, Carroll SL, Jardine PM, Watson DB, Criddle CS, Zhou J (2005) Impacts on microbial communities and cultivable isolates from groundwater contaminated with high levels of nitric acid–uranium waste. FEMS Microbiol Ecol 53:417–428

    Article  CAS  PubMed  Google Scholar 

  • Francis AJ, Dodge CJ (1998) Remediation of soils and wastes contaminated with uranium and toxic metals. Environ Sci Technol 32:3993–3998

    Article  CAS  Google Scholar 

  • Friberg L, Nordberg GF, Vouk VBGFBN, Nordberg M, Friberg L (1986) General aspects, handbook on the toxicology of metals, vol 1. Elsevier, Amsterdam

    Google Scholar 

  • Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124:25–60

    Article  CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643. https://doi.org/10.1099/mic.0.037143-0

    Article  CAS  PubMed  Google Scholar 

  • Grosche B, Kreuzer M, Kreisheimer M, Schnelzer M, Tschense A (2006) Lung cancer risk among German male uranium miners: a cohort study, 1946–1998. Br J Cancer 95:1280–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gueguen Y, Rouas C, Monin A, Manens L, Stefni J, Delissen O, Grison S, Dublineau I (2014) Molecular, cellular, and tissue impact of depleted uranium on xenobiotic-metabolizing enzymes. Arch Toxicol 88:227–239

    Article  CAS  PubMed  Google Scholar 

  • Hahn FF, Guilmette RA, Hoover MD (2002) Implanted depleted uranium fragments cause soft tissue sarcomas in the muscles of rats. Environ Health Perspect 110:51–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao Y, Ren J, Liu J, Luo S, Ma T, Li R, Su Y (2012) The protective role of zinc against acute toxicity of depleted uranium in rats. Basic Clin Pharmacol Toxicol 111:402–410

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Ren J, Liu C, Li H, Liu J, Yang Z, Li R, Su Y (2014) Zinc protects human kidney cells from depleted uranium-induced apoptosis. Basic Clin Pharmacol Toxicol 114:271–280

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Huang J, Gu Y, Liu C, Li H, Liu J, Ren J, Yang Z, Peng S, Wang W, Li R (2015) Metallothionein deficiency aggravates depleted uranium-induced nephrotoxicity. Toxicol Appl Pharmacol 287:306–315

    Article  CAS  PubMed  Google Scholar 

  • Hon Z, Osterreicher J, Navratil L (2015) Depleted uranium and its effects on humans. Sustainability 7:4063–4077

    Article  CAS  Google Scholar 

  • Hudcova H, Badurova M, Rozkosny M, Sova J, Funkova R, Svobodova J (2013) Quality and mutagenicity of water and sediment of the streams impacted by the former uranium mine area Olší–Drahonín (Czech Republic). J Environ Radioact 116:159–165

    Article  CAS  PubMed  Google Scholar 

  • Isani G, Carpene E (2014) Metallothioneins, unconventional proteins from unconventional animals: a long journey from nematodes to mammals. Biomolecules 4:435–457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalinich F, Ramakrishnan N, Villa V, McClain DE (2002) Depleted uranium–uranyl chloride induces apoptosis in mouse J774 macrophages. Toxicology 179:105–114

    Article  CAS  PubMed  Google Scholar 

  • Katsenovich Y, Carvajal D, Guduru R, Lagos L, Li C-Z (2013) Assessment of the resistance to uranium (VI) exposure by Arthrobacter sp. isolated from Hanford site soil. Geomicrobiol J 30:120–130

    Article  CAS  Google Scholar 

  • Lawrence GD, Patel KS, Nusbaum A (2014) Uranium toxicity and chelation therapy. Pure Appl Chem 86(7). https://doi.org/10.1515/pac-2014-0109

    Article  CAS  Google Scholar 

  • Lestaevel P, Romero E, Dhieux B, Bensoussan H, Berradi H, Dublineau I, Voisin P, Gourmelon P (2009) Different pattern of brain pro-/anti-oxidant activity between depleted and enriched uranium in chronically exposed rats. Toxicology 258:1–9

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhang Y (2012) Remediation technology for the uranium contaminated environment: a review. Procedia Environ Sci 13:1609–1615

    Article  CAS  Google Scholar 

  • Lu S, Zhao FY (1990) Nephrotoxic limit and annual limit on intake for natural U. Health Phys 58:619–623

    Article  CAS  PubMed  Google Scholar 

  • Lucia CMD, Santos LLM, da Cruz Rodrigues KC, da Cruz Rodrigues VC, Martino HSD, Sant’Ana HMP (2014) Bioavailability of zinc in wistar rats fed with rice fortified with zinc oxide. Nutrients 6:2279–2289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malaviya P, Singh A (2012) Phytoremediation strategies for uranium-contaminated environments: a review. Crit Rev Environ Sci Technol 42:2575–2647

    Article  CAS  Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11:843–872

    Article  CAS  Google Scholar 

  • Martin KR (2006) Targeting apoptosis with dietary bioactive agents. Exp Biol Med 231:117–129

    Article  CAS  Google Scholar 

  • Martinez RJ, Beazley MJ, Taillefert M, Arakaki AK, Skolnick J, Sobecky PA (2007) Aerobic uranium (VI) bioprecipitation by metal-resistant bacteria isolated from radionuclide- and metal-contaminated subsurface soils. Environ Microbiol 9:3122–3133

    Article  CAS  PubMed  Google Scholar 

  • McDiarmid MA, Keogh JP, Hooper FJ, McPhaul K, Squibb K, DiPino R et al (2000) Health effects of depleted uranium on exposed Gulf War veterans. Environ Res 82:168–180

    Article  CAS  PubMed  Google Scholar 

  • Merroun ML, Selenska-Pobell S (2008) Bacterial interactions with uranium: an environmental perspective. J Contam Hydrol 102:285–295

    Article  CAS  PubMed  Google Scholar 

  • Middle East Eye -#SyriaWar - US Pentagon confirms it used depleted uranium in Syria; www.middleeasteye.net

  • Miller AC, Stewart M, Brooks K, Shi L, Page N (2002a) Depleted uranium-catalyzed oxidative DNA damage: absence of significant alpha particle decay. J Inorg Biochem 91:246–252

    Article  CAS  PubMed  Google Scholar 

  • Miller AC, Xu J, Stewart M, Brooks K, Hodge S, Shi L, Page N, McClain D (2002b) Observation of radiation-specific damage in human cells exposed to depleted uranium: dicentric frequency and neoplastic transformation as endpoints. Radiat Prot Dosim 99:275–278

    Article  CAS  Google Scholar 

  • Miller AC, Brooks K, Stewart M, Anderson B, Shi L, McClain D, Page N (2003) Genomic instability in human osteoblast cells after exposure to depleted uranium: delayed lethality and micronuclei formation. J Environ Radioact 64:247–259

    Article  CAS  PubMed  Google Scholar 

  • National Academies Press (2012) Uranium mining in Virginia: scientific, technical, environmental, human health and safety, and regulatory aspects of uranium mining and processing in Virginia. Chapter 5: Potential human health effects of uranium mining, processing, and reclamation. https://www.ncbi.nlm.nih.gov/books/NBK201047/

  • Ng CY, Pereir S, Cheng SH, Adam-Guillermin C, Garnier-Laplace J, Yu KN (2015) Combined effects of depleted uranium and ionising radiation on zebrafish embryos. Radiat Prot Dosim 167:311–315

    Article  CAS  Google Scholar 

  • Obralic N, Gavrankapetanović F, Dizdarević Z, Duric O, Sisic F, Selak I, Balta S, Nakas B (2004) Regional comparison of cancer incidence. Radiol Oncol 38:145–151

    Google Scholar 

  • Ortega A, Domingo JL, Gomez M, Corbella J (1989) Treatment of Experimental Acute Uranium Poisoning by Chelating Agents. Pharmacol Toxicol 64:247–251

    Article  CAS  PubMed  Google Scholar 

  • Periyakaruppan A, Kumar F, Sarkar S, Sharma CS, Ramesh GT (2007) Uranium induces oxidative stress in lung epithelial cells. Arch Toxicol 81:389–395

    Article  CAS  PubMed  Google Scholar 

  • Prasad MNV, Freitas HMO (2003) Metal hyperaccumulation in plants - biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6. https://doi.org/10.2225/vol6-issue3-fulltext-6

  • Priest ND (2001) Toxicity of depleted uranium. Lancet 357:244–246

    Article  CAS  PubMed  Google Scholar 

  • Raymond-Whish S, Mayer LP, O’Neal T, Martinez A, Sellers MA, Christian PJ, Marion SL, Begay C, Proper CR, Hoyer PB, Dyer CD (2007) Drinking water with uranium below the U.S. EPA water standard causes estrogen receptor–dependent responses in female mice. Environ Health Perspect 115:1711–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouas C, Bensoussan H, Suhard D, Tessier C, Grandcolas L, Rebiere F, Dublineau I, Taouis M, Pallardy M, Lestaevel P, Gueguen Y (2010) Distribution of soluble uranium in the nuclear cell compartment at subtoxic concentrations. Chem Res Toxicol 23:1883–1889

    Article  CAS  PubMed  Google Scholar 

  • Ruttkay-Nedecky B, Nejdl L, Gumulrc J, Zitka O, Masarik M, Eckschlager T, Stiborova M, Adam V, Kizek R (2013) The role of metallothionein in oxidative stress. Int J Mol Sci 14:6044–6066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salbu B, Krekling T (1998) Characterisation of radioactive particles in the environment. Analyst 123:843–850

    Article  CAS  Google Scholar 

  • Schnug E, Lottermoser BG (2013) Fertilizer-derived uranium and its threat to human health. Environ Sci Technol 47:2433–2434

    Article  CAS  PubMed  Google Scholar 

  • Schnug E, Steckel H, Haneklaus S (2005) Contribution of uranium in drinking waters to the daily uranium intake of humans - a case study from Northern Germany. Landbauforschung Völkenrode 55:227–236

    CAS  Google Scholar 

  • Sears ME (2013) Chelation: harnessing and enhancing heavy metal detoxification – a review. Sci World J 2013:219840. https://doi.org/10.1155/2013/219840

    Article  CAS  Google Scholar 

  • Shahandeh H, Hossner LR (2002) Role of soil properties in phytoaccumulation of uranium. Water Air Soil Pollut 141:165–180

    Article  CAS  Google Scholar 

  • Shaki F, Hosseini M-J, Ghazi-Khansari M, Pourahmad J (2012) Toxicity of depleted uranium on isolated rat kidney mitochondria. Biochim Biophys Acta 1820(12):1940–1950. – [BBA] general subjects

    Article  CAS  PubMed  Google Scholar 

  • Shawky S (2003) Causes of death in the Eastern Mediterranean Region during the years 1998–2000. Saudi Med J 24:380–387

    PubMed  Google Scholar 

  • Sheppard SC, Evenden WG (1988) Critical compilation and review of plant/soil concentration ratios for uranium, thorium and lead. J Environ Radioact 8:255–285

    Article  CAS  Google Scholar 

  • Shields LM, Wiese WH, Skipper BJ, Charley B, Benally L (1992) Navajo birth outcomes in the Shiprock uranium mining area. Health Phys 63:542–551

    Article  CAS  PubMed  Google Scholar 

  • Siddoo-Atwal C (2009) AT, apoptosis, and cancer: a viewpoint. Indian J Ecol 36:103–110

    Google Scholar 

  • Siddoo-Atwal C (2017a) Heavy metal carcinogenesis: a possible mechanistic role for apoptosis. Vegetos 30(Special). https://doi.org/10.5958/2229-4473.2017.00046.5

    Article  Google Scholar 

  • Siddoo-Atwal C (2017b) A New Approach to Cancer Risk Assessment: An Overview. Publishing, Lambert Academic

    Google Scholar 

  • Siddoo-Atwal C (2019) An approach to cancer risk assessment and carcinogenic potential for three classes of agricultural pesticide. In: Natural resource management: ecological perspectives. Springer, Cham, pp 109–132

    Chapter  Google Scholar 

  • Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: An overview. Indian J Pharm 43:246–253

    Article  CAS  Google Scholar 

  • Sitte J, Akob DM, Kaufmann C, Finster K, Banerjee D, Burkhardt E-M, Kostka JE, Scheinost AC, Buchel G, Kusel K (2010) Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil. Appl Environ Microbiol 76:3143–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y, Banfield JF (2004) Resistance to, and accumulation of, uranium by bacteria from a uranium-contaminated site. Geomicrobiol J 21:113–121

    Article  CAS  Google Scholar 

  • Taylor MD (2007) Accumulation of uranium in soils from impurities in phosphate fertilisers. Landbauforschung Völkenrode 2:133–139

    Google Scholar 

  • Thoennessen M (2016) The discovery of isotopes – a complete compilation. Springer, Cham

    Google Scholar 

  • UBA website – website of the German Crop Protection Association (Fertilizer)

    Google Scholar 

  • Vassilev A, Schwitzguebel J-P, Thewys T, van der Lelie D, Vangronsveld J (2004) The use of plants for remediation of metal-contaminated soils. Sci World J 4:9–34

    Article  CAS  Google Scholar 

  • Vicente-Vicente L, Quiros Y, Pérez-Barriocanal F, López-Novoa JM, López-Hernández FJ, Morales AI (2010) Nephrotoxicity of uranium: pathophysiological, diagnostic and therapeutic perspectives. Toxicol Sci 118:324–347

    Article  CAS  PubMed  Google Scholar 

  • Wagner SE, Burch JB, Bottai M, Puett R, Porter D, Bolick-Aldrich TT, Wilkerson RC, Vena JE, Hebert JR (2011) Groundwater uranium and cancer incidence in South Carolina. Cancer Causes Control 22:41–50

    Article  PubMed  Google Scholar 

  • Wall JD, Krumholz LR (2006) Uranium reduction. Annu Rev Microbiol 60:149–166

    Article  CAS  PubMed  Google Scholar 

  • Wegmuller R, Tay F, Zeder C, Brnic M, Hurrell RF (2014) Zinc absorption by young adults from supplemental zinc citrate is comparable with that from zinc gluconate and higher than from zinc oxide. J Nutr 144:132–136

    Article  CAS  PubMed  Google Scholar 

  • WHO – Depleted uranium sources, exposure, and health effects (online monograph)

    Google Scholar 

  • Wise SS, Thompson WD, Aboueissa A-M, Mason MD, Wise JP (2007) Particulate depleted uranium is cytotoxic and clastogenic to human lung cells. Chem Res Toxicol 20:815–820

    Article  CAS  PubMed  Google Scholar 

  • World Nuclear Association Website (updated 2017) What is Uranium? How does it work?

    Google Scholar 

  • Wrenn ME, Durbin PW, Howard B, Lipsztein J, Rundo J, Still ET, Willis DL (1985) Metabolism of ingested U and Ra. Health Phys 48:601–633

    Article  CAS  PubMed  Google Scholar 

  • Yazzie M, Gamble SL, Civitello ER, Stearns DM (2003) Uranyl acetate causes DNA single strand breaks in vitro in the presence of ascorbate (vitamin C). Chem Res Toxicol 16:524–530

    Article  CAS  PubMed  Google Scholar 

  • Zhang X-F, Ding C-J, Liu H, Liu L-H, Zhao C (2011) Protective effects of ion-imprinted chitooligosaccharides as uranium-specific chelating agents against the cytotoxicity of depleted uranium in human kidney cells. Toxicology 286:75–84

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Zhao T, Yuan Y, Hu N, Tang X (2015) Hydrogen sulfide (H2S) attenuates uranium-induced acute nephrotoxicity through oxidative stress and inflammatory response via Nrf2-NF-κB pathways. Chem Biol Interact 242:353–362

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I am grateful for discussions with a bright, young geologist, Talya Grewal, that helped to shape this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siddoo-Atwal, C. (2019). Biological Effects of Uranium and Its Decay Products on Soil Microbes, Plants, and Humans. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Microbe Interface. Springer, Cham. https://doi.org/10.1007/978-3-030-19831-2_17

Download citation

Publish with us

Policies and ethics