Skip to main content
Log in

Stopped-flow kinetic analysis of the oxidation of semicarbazide by hexachloroiridate(IV)

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A kinetic analysis of the oxidation of semicarbazide (SEM) by the single-electron oxidant [IrCl6]2− has been carried out by stopped-flow spectrometric techniques. The reaction proved to be first order each in [IrCl6 2−] and [SEM]tot, leading to overall second-order kinetics. The variation in the observed second-order rate constant k′ with pH was explored over the pH range of 0–7.11. Spectrophotometric titration revealed a stoichiometry of Δ[IrCl6 2−]/Δ[SEM]tot = 4:1 for the redox reaction. On the basis of the rate law, the redox stoichiometry, and the rapid scan spectra, a reaction mechanism is proposed which involves parallel attacks of [IrCl6]2− on both H2NCONHNH3 + and H2NCONHNH2 as rate-determining steps, followed by several rapid reactions. The rate expression, derived from the reaction mechanism, was utilized to simulate the k′–pH profile yielding a virtually perfect fit and indicating that the reaction path involving H2NCONHNH3 + does not make a significant contribution to the overall rate. The reaction between [IrCl6]2− and H2NCONHNH2 was further studied as a function of both temperature and ionic strength. From the temperature dependence, activation parameters were obtained as: ∆H 2  = 34.9 ± 1.5 kJ mol−1 and ∆S 2  = −78 ± 5 J K−1 mol−1. The observed ionic strength dependence suggests that the rate-determining step is between [IrCl6]2− and a neutral species of SEM. Hence, both the temperature and ionic strength dependency studies are in good agreement with the proposed reaction mechanism, in which the rate-determining step involves an outer sphere electron transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bogolubsky AV, Moroz YS, Mykhailiuk PK, Dmytriv YV, Pipko SE, Babichenko LN, Konovets AI, Tolmachev A (2015) RSC Adv 5:1063

    Article  CAS  Google Scholar 

  2. Podyminogin MA, Lukhtanov EA, Reed MV (2001) Nucleic Acids Res 29:5090

    Article  CAS  Google Scholar 

  3. Vazquez J, Albericio F (2006) Tetrahedron Lett 47:1657

    Article  CAS  Google Scholar 

  4. Deinderfer P, Davis R, Zentel R (2007) Soft Matter 3:1308

    Article  Google Scholar 

  5. Mercader J, Iffia-Soltesz Z, Bour S, Carpene C (2011) J Obes ID 475786:1

    Article  Google Scholar 

  6. Pereira AS, Donato JL, De Nucei G (2004) Food Addit Contam 21:63

    Article  CAS  Google Scholar 

  7. de la Calle MB, Anklam E (2005) Anal Bioanal Chem 382:968

    Article  Google Scholar 

  8. Szilagyi S, de la Calle MB (2006) Eur Food Res Technol 224:141

    Article  CAS  Google Scholar 

  9. Szilagyi S, de la Calle MB (2006) Anal Chim Acta 572:113

    Article  CAS  Google Scholar 

  10. Casella IG, Contursi M (2015) Sens Actuators B Chem 209:25

    Article  CAS  Google Scholar 

  11. Stadler RH, Verzegnassi L, Seefelder W, Racault L (2015) Food Addit Contam Part A 32:1842

    Article  CAS  Google Scholar 

  12. Takahashi M, Yoshida M, Inoue K, Morikawa T, Nishikawa A, Ogawa K (2014) Food Chem Toxicol 73:84

    Article  CAS  Google Scholar 

  13. Hirakawa K, Midorikawa K, Oikawa S, Kawanishi S (2003) Mutat Res 536:91

    Article  CAS  Google Scholar 

  14. Marlier JF, Fogle EJ, Cleland WW (2008) Biochemistry 47:11158

    Article  CAS  Google Scholar 

  15. Ratnam S, Anipindi NR (2012) Transit Met Chem 37:453

    Article  CAS  Google Scholar 

  16. Pelizzetti E, Mentasti E, Baiocchi C (1976) J Phys Chem 80:2979

    Article  CAS  Google Scholar 

  17. Pelizzetti E, Mentasti E, Pramauro E (1978) Inorg Chem 17:1181

    Article  CAS  Google Scholar 

  18. Stanbury DM (1984) Inorg Chem 23:2879

    Article  CAS  Google Scholar 

  19. Hubbard CD, Gerhard A, van Eldik R (2001) Dalton Trans 1069

  20. Hu Y, Stanbury DM (2016) Inorg Chem 55:7797

    Article  CAS  Google Scholar 

  21. Kimura M, Yamamoto M, Yamabe S (1982) J Chem Soc Dalton Trans 423

  22. Zhang J, Guo Y, Lu T, Shi H, Dai T, Shi T (2015) Transit Met Chem 40:281

    Article  CAS  Google Scholar 

  23. Remco M, Rode BM (1995) J Mol Struct Theochem 339:125

    Article  Google Scholar 

  24. Sorensen PE, Bruhn K, Lindelov F (1974) Acta Chem Scand A 28:162

    Article  CAS  Google Scholar 

  25. Johnson MD, Hornstein BJ (1994) Inorg Chim Acta 225:145

    Article  CAS  Google Scholar 

  26. Pethybridge AD, Prue JE (1972) Prog Inorg Chem 17:327

    Article  CAS  Google Scholar 

  27. Mehrotra RN, Kirschenbaum LJ (1989) Inorg Chem 28:4327

    Article  CAS  Google Scholar 

  28. Wu L, Schwederski BE, Margerum DW (1990) Inorg Chem 29:3578

    Article  CAS  Google Scholar 

  29. Shi T, Elding LI (1998) Inorg Chim Acta 282:55

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of this work by grants from the Natural Science Foundation of Hebei Province (B2015201073), from the You Bo Program of Hebei University (YB201403), from the Natural Science Foundation of Hebei University (2014-11), and from the National Natural Science Foundation of China (81273128 to H.S.), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongmei Shi or Tiesheng Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nan, C., Dong, J., Jiao, X. et al. Stopped-flow kinetic analysis of the oxidation of semicarbazide by hexachloroiridate(IV). Transit Met Chem 42, 9–15 (2017). https://doi.org/10.1007/s11243-016-0100-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-016-0100-1

Keywords

Navigation