Skip to main content
Log in

Tuber and subependymal giant cell astrocytoma associated with tuberous sclerosis: an immunohistochemical, ultrastructural, and immunoelectron microscopic study

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The cellular nature of the giant eosinophilic cells of tuber and of the cells comprising subependymal giant cell astrocytoma (SEGA) in tuberous sclerosis (TS) remains unclear. To assess the characteristics of these lesions, 13 tubers and 6 SEGA were immunohistochemically studied with glial and neuron-associated antigens. In addition to conventional ultrastructure, 6 tubers and 8 SEGA were fibrillary acidic protein (GFAP) and somatostatin. Eosinophilic giant cells of tubers were positive for vimentin (100%), GFAP (77%) and S-100 protein (92%); such cells were also found to a various extent to be reactive for neuron-associated antigens, including neurofilament (NF) proteins (38%) or class III β-tubulin (77%). SEGA also showed variable immunoreactivity for GFAP (50%) or for S-100 protein (100%); NF epitopes, class III β-tubulin, and calbindin 28-kD were expressed in 2 (33%), 5 (83%) and 4 (67%) cases, respectively. Cytoplasmic staining for somatostatin (50%), met-enkephalin (50%), 6-hydroxytryptamine (33%), β-endorphin (33%) and neuropeptide Y (17%) was noted in SEGA, but not in tubers. Ultrastructurally, the giant cells of tubers and the cells of SEGA contained numerous intermediate filaments, frequent lysosomes and occasional rectangular or rhomboid membrane-bound crystalloids exhibiting lamellar periodicity and structural transition to lysosomes. Some SEGA cells showed features suggestive of neuronal differentiation, including stacks of rough endoplasmic reticulum, occasional microtubules and a few dense-core granules. Furthermore, in one case of tuber, a process of a single large cell was seen to be engaged in synapse formation. Intermediate filaments within a few cells of both lesions were decorated by gold particle-labeled GFAP antiserum. Within the tumor cells of SEGA, irregular, non-membrane-bound, electron-lucent areas often contained somatostatin-immunoreactive particles, whereas the latter could not be detected in tuber. The present study provides further evidence of divergent glioneuronal differentiation, both in the giant cells of tubers and the cells of SEGA. The findings of similar cells at different sites, including the subependymal zone, white matter (“heterotopias”), and cortex indirectly supports the idea that these lesions of TS result from a migration abnormality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altermatt HJ, Shepherd CW, Scheithauer BW, Gomez MR (1991) Das subependymale Riesenzellen-Astrozytom. Zentralbl Pathol 137: 105–116

    Google Scholar 

  2. Altermatt HJ, Lopes MBS, Scheithauer BW, VandenBerg SR (1993) The immunochemistry of subependymal giant cell astrocytoma (SEGA) in tuberous sclerosis (TS) (abstract). J Neuropathol Exp Neurol 52: 326

    Google Scholar 

  3. Arseni C, Alexianu M, Horvat L, Alexianu D, Petrovici A (1972) Fine structure of atypical cells in tuberous sclerosis. Acta Neuropathol (Berl) 21: 185–193

    Google Scholar 

  4. Aydin F, Harlan RE, Sholes AH, Dinh DH, Nadell JM, Harkin JC (1994) Subependymal giant cell astrocytoma: a case report with cell culture, cytogenetic, immunohistochemical, ultrastructural and proliferation studies (abstract). Brain Pathol 4: 408

    Google Scholar 

  5. Bender BL, Yunis EJ (1980) Central nervous system pathology of tuberous sclerosis in children. Ultrastruct Pathol 1: 287–299

    Google Scholar 

  6. Bender BL, Yunis EJ (1982) The pathology of tuberous sclerosis. Pathol Annu 17: 339–382

    Google Scholar 

  7. Bettica A, Johnson AB (1990) Ultrastructural immunogold labeling of glial filaments in osmicated and unosmicated epoxyembedded tissue. J Histochem Cytochem 38: 103–109

    Google Scholar 

  8. Binder LI, Frankfurter A, Kim H, Caceres A, Payne MR, Rebhun LJ (1984) Heterogeneity of microtubule-associated protein 2 during rat brain development. Proc Natl Acad Sci USA 81: 5613–5617

    Google Scholar 

  9. Boesel CP, Paulson GW, Kosnik EJ, Earle KM (1979) Brain hamartomas and tumors associated with tuberous sclerosis. Neurosurgery 4: 410–417

    Google Scholar 

  10. Bonetti F, Chiodera PL, Pea M, Margignoni G, Bosi F, Zamboni G, Mariuzzi GM (1993) Transbronchial biopsy in lymphangiomyomatosis of the lung. HMB45 for diagnosis. Am J Surg Pathol 17: 1092–1102

    Google Scholar 

  11. Bonnin JM, Rubinstein LJ, Papasozomenos SC, Marangos PJ (1984) Subependymal giant cell astrocytoma. Significance and possible cytogenetic implications of an immunohistochemical study. Acta Neuropathol (Berl) 62: 185–193

    Google Scholar 

  12. Burger PC, Scheithauer BW (1993) Tumors of the central nervous system. Atlas of tumor pathology, 3rd series, fascicle 10. Armed Forces Institute of Pathology, Washington, DC

    Google Scholar 

  13. Caccamo DV, Herman MM, Frankfurter A, Katsetos D, Collins VP, Rubinstein LJ (1989) An immunohistochemical study of neuropeptides and neuronal cytoskeletal proteins in the neuroepithelial component of a spontaneous murine ovarian teratoma. Primitive neuroepithelium displays immunoreactivity for neuropeptides and neuron-associated β-tubulin isotype. Am J Pathol 135: 801–813

    Google Scholar 

  14. Chou TM, Chou SM (1989) Tuberous sclerosis in the premature infant: a report of a case with immunohistochemistry on the CNS. Clin Neuropathol 8: 45–52

    Google Scholar 

  15. Davidson M, Yoshidome H, Stenroos E, Johnson WG (1991) Neuron-like cells in culture of tuberous sclerosis tissue. Ann NY Acad Sci 615: 196–210

    Google Scholar 

  16. De Chadarevian J-P, Hollenberg RD (1979) Subependymal giant cell tumor of tuberous sclerosis. A light and ultrastructural study. J Neuropathol Exp Neurol 38: 419–433

    Google Scholar 

  17. DeLellis RA, Dayal Y (1992) Neuroendocrine system. In: Sternberg SS (ed) Histology for pathologists. Raven Press, New York, pp 347–362

    Google Scholar 

  18. Dumas JLR, Escourolle JPR (1973) Etude ultrastructurale des lesions cerebrales de la sclerose tubereuse de Bourneville. Acta Neuropathol (Berl) 25: 259–270

    Google Scholar 

  19. Erlandson RA (1994) Diagnostic transmission electron microscopy of tumors with clinicopathological, immunohistochemical, and cytogenetic correlations. Raven Press, New York, pp 270–274

    Google Scholar 

  20. Ferrer I, Fabregues I, Coll J, Ribalta T, Rives A (1984) Tuberous sclerosis: a Golgi study of cortical tuber. Clin Neuropathol 3: 47–51

    Google Scholar 

  21. Frankfurter A, Binder LI, Rebhun LI (1986) Limited tissue distribution of a novel beta-tubulin isoform (abstract). J Cell Biol 103: 273a

  22. Fukuda Y, Kawamoto M, Yamamoto A, Ishizaki M, Basset F, Masugi Y (1990) Role of elastic fiber degradation in emphysema-like lessions of pulmonary lymphangiomyomatosis. Hum Pathol 21: 1252–1261

    Google Scholar 

  23. Gomez MR (1992) The tuberous sclerosis complex a prototype of hamartiosis and hamartomatosis. J Dermatol 19: 892–896

    Google Scholar 

  24. Hirano A, Tuazon R, Zimmerman HM (1968) Neurofibrillary changes, granulovacuolar bodies and argentophilic globules observed in tuberous sclerosis. Acta neuropathol (Berl) 11: 257–261

    Google Scholar 

  25. Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques. A comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29: 577–580

    Google Scholar 

  26. Huttenlocher PR, Wollmann RL (1991) Cellular neuropathology of tuberous sclerosis. Ann NY Acad Sci 615: 140–148

    Google Scholar 

  27. Iwaki T, Tateishi J (1991) Immunohistochemical demonstration of B-crystallin in hamartomas of tuberous sclerosis. Am J Pathol 139: 1303–1308

    Google Scholar 

  28. Iwaki T, Iwaki A, Miyazono M, Goldman JE (1991) Preferential expression of αB-crystallin in astrocytic elements of neuroectodermal tumors. Cancer 68: 2230–2240

    Google Scholar 

  29. Iwasaki Y, Yoshikawa H, Sasaki M, Sugai K, Suzuki H, Hirayama Y, Sakuragawa N, Arima M, Takashima S, Aoki N (1990) Clinical and immunohistochemical studies of subependymal giant cell astrocytomas associated with tuberous sclerosis. Brain Dev 12: 478–481

    Google Scholar 

  30. Janssen LAJ, Povey S, Attwood J, Sandkuyl LA, Lindhout D, Flodman P, Smith M, Sampson JR, Haines JL, Merkens EC, Fleury P, Short P, Amos J, Halley DJJ (1991) A comparative study on genetic heterogeneity in tuberous sclerosis: evidence for one gene on 9q34 and a second on 11q22–23. Ann NY Acad Sci 615: 306–315

    Google Scholar 

  31. Jay V, Edwards V, Rutka JT (1993) Crystalline inclusion in a subependymal giant cell tumor in a patient with tuberous sclerosis. Ultrastruct Pathol 17: 503–513

    Google Scholar 

  32. Johnson WG, Yoshidome H, Stenroos ES, Davidson MM (1991) Origin of the neuron-like cells in tuberous sclerosis tissues. Ann NY Acad Sci 615: 211–219

    Google Scholar 

  33. Kwiatkowski DJ, Short MP (1994) Tuberous sclerosis. Arch Dermatol 130: 348–354

    Google Scholar 

  34. Lee MK, Tuttle JB, Rebhun LI, Cleveland DW, Frankfurter A (1990) The expression and posttranslational modification of a neuron-specific β-tubulin isotype during chick embryogenesis. Cell Motil Cytoskeleton 17: 118–132

    Google Scholar 

  35. Lyons JC, Scheithauer BW, Ginsburg WW (1982) Gaucher's disease and glioblastoma multiforme in two siblings. A clinicopathologic study. J Neuropathol Exp Neurol 41: 45–53

    Google Scholar 

  36. Machado-Salas JP (1984) Abnormal dendritic patterns and aberrant spine development in Bourneville's disease: a Golgi survey. Clin Neuropathol 3: 52–58

    Google Scholar 

  37. Mukai M, Torikara C, Iri H, Tamai S, Sugiura H, Tanaka Y, Sakamoto M, Hirohashi S (1992) Crystalloids in angiomyolipoma. I. A previously unnoticed phenomenon of renal angiomyolipoma occurring at a high frequency. Am J Surg Pathol 16: 1–10

    Google Scholar 

  38. Nakamura S, Tsubokawa T (1987) Ultrastructure of subependymal giant-cell astrocytoma associated with tuberous sclerosis. J Clin Electron Microsc 20: 5–6

    Google Scholar 

  39. Nakamura Y, Becker LE (1983) Subependymal giant-cell tumor: astrocytic or neuronal? Acta Neuropathol (Berl) 60: 271–277

    Google Scholar 

  40. Nardelli E, De Benedictis G, La Stilla G, Nicolardi G (1986) Tuberous sclerosis: a neuropathological and immunohistochemical (PAP) study. Clin Neuropathol 5: 261–266

    Google Scholar 

  41. Onodera K, Takahashi T, Watanabe R, Ishibashi Y, Sasaki M, Kimura G (1990) Distribution of glial fibrillary acidic protein (GFAP) in the intermediate filaments of the cultured cells from a patient with tuberous sclerosis. J Dermatol 17: 395–402

    Google Scholar 

  42. Probst A, Ohnacker APH (1977) Sclerose tubereuse de bourneville chez un premature. Ultrastructure des cellules atypiques: presence de microvillosites. Acta Neuropathol (Berl) 40: 157–161

    Google Scholar 

  43. Reagan TJ (1988) Neuropathology. In: Gomez MR (ed) Tuberous selerosis, 2nd edn. Raven Press, New York, pp 63–74

    Google Scholar 

  44. Roach ES (1990) International tuberous sclerosis conference. J Child Neurol 5: 269–272

    Google Scholar 

  45. Scheithauer BW (1992) The neuropathology of tuberous sclerosis. J Dermatol 19: 897–903

    Google Scholar 

  46. Shepherd CW, Scheithauer BW, Gomez MR, Altermatt HJ, Katzmann JA (1991) Subependymal giant cell astrocytoma: a clinical, pathologic, and flow cytometric study. Neurosurgery 28: 864–868

    Google Scholar 

  47. Sima AAF, Robertson DM (1979) Subependymal giant-cell astrocytoma. Case report with ultrastructural study. J Neurosurg 50: 240–245

    Google Scholar 

  48. Stefansson K (1991) Tuberous sclerosis. Mayo Clin Proc 66: 868–872

    Google Scholar 

  49. Stefansson K, Wollmann R (1980) Distribution of glial fibrillary acidic protein in central nervous system lesions of tuberous sclerosis. Acta Neuropathol (Berl) 52: 135–140

    Google Scholar 

  50. Stefansson K, Wollmann R (1981) Distribution of the neuronal specific protein, 14-3-2, in central nervous system lesions of tuberous sclerosis. Acta Neuropathol (Berl) 53: 113–117

    Google Scholar 

  51. Stefansson K, Wollmann RL, Huttenlocher PR (1988) Lineages of cells in the central nervous system. In: Gomez MR (ed) Tuberous sclerosis, 2nd edn. Raven Press, New York, pp 75–87

    Google Scholar 

  52. Trombley IK, Mirra SS (1981) Ultrastructure of tuberous sclerosis: cortical tuber and subependymal tumor. Ann Neurol 9: 174–181

    Google Scholar 

  53. VandenBerg SR, May EE, Rubinstein LJ, Herman MM, Perentes E, Vinores SA, Collins VP, Park TS (1987) Desmoplastic supratentorial neuroepithelial tumors of infancy with divergent differentiation potential (“desmoplastic infantile ganglioglioma”). Report on 11 cases of a distinctive embryonal tumor with favorable prognosis. J Neurosurg 66: 58–71

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirose, T., Scheithauer, B.W., Lopes, M.B.S. et al. Tuber and subependymal giant cell astrocytoma associated with tuberous sclerosis: an immunohistochemical, ultrastructural, and immunoelectron microscopic study. Acta Neuropathol 90, 387–399 (1995). https://doi.org/10.1007/BF00315012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00315012

Key words

Navigation