Skip to main content
Log in

Expression of the gene encoding subunit II of yeast QH2: Cytochrome c oxidoreductase is regulated by multiple factors

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

In Saccharmmyces cerevisiae, the COR2 gene codes for the 40 kDa subunit II of the QH2: cytochrome c oxidoreductase, an enzyme of the mitochondrial respiratory chain. Regions in the 5′ flank of this gene important for regulated expression were identified by assaying β-galactosidase activities in cells carrying different COR2-lacZ fusion genes. Sequences downstream of position-201 relative to the translational initiation codon are sufficient to confer regulation by carbon source, whereas sequences downstream of position-153 do not give rise to significant expression. A binding site for the abundant general transcription factor GFI is present in the region between-201 and-153 just upstream from sequences which resemble the consensus DNA recognition sequence of the regulatory protein complex HAP2/HAP3: 5′-TNATTGGT-3′. By quantitating RNA levels and assaying β-galactosidase activities we show that synthesis of COR2, which is not a hemoprotein, is regulated by HAP1, HAP2/HAP3 and heme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arcangioli B, Lescure B (1985) EMBO J 4:2627–2633

    Google Scholar 

  • Bradford MM (1976) Anal Biochem 72:248–254

    Google Scholar 

  • Dente L, Cesareni G, Cortese R (1983) Nucleic Acids Res 11:1645–1655

    Google Scholar 

  • De Vries S, Marres CAM (1988) Biochim Biophys Acta 895:205–239

    Google Scholar 

  • Dorsman JC, van Heeswijk WC, Grivell LA (1988) Nucleic Acids Res 16:7287–7301

    Google Scholar 

  • Dorsman JC, Doorenbosch MM, Maurer CTC, de Winde JH, Mager WH, Planta RJ, Grivell LA (1989) Nucleic Acids Res 17:4917–4923

    Google Scholar 

  • Forsburg SL, Guarente L (1988) Mol Cell Biol 8:647–654

    Google Scholar 

  • Guarente L, Ptashne M (1981) Proc Natl Acad Sci USA 78:2199–2203

    Google Scholar 

  • Guarente L, Lalonde B, Gifford P, Alani E (1984) Cell 36:503–511

    Google Scholar 

  • Guarente L (1987) Annu Rev Genet 21:425–452

    Google Scholar 

  • Grivell LA (1989) Eur J Biochem 182:477–493

    Google Scholar 

  • Hamil KG, Nam HG, Fried HM (1988) Mol Cell Biol 8:4328–4341

    Google Scholar 

  • Klebe RJ, Harriss JV, Sharp ZD, Douglas MG (1983) Gene 25:333–341

    Google Scholar 

  • Lowry CV, Zitomer RS (1984) Proc Natl Acad Sci USA 81:6129–6133

    Google Scholar 

  • Lowry CV, Lieber RH (1986) Mol Cell Biol 6:4145–4148

    Google Scholar 

  • Maarse AC, De Haan M, Bout A, Grivell LA (1988a) Nucleic Acids Res 16:5797–5811

    Google Scholar 

  • Maarse AC, De Haan M, Schoppink PJ, Berden JA, Grivell LA (1988b) Eur J Biochem 172:179–184

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Mattoon JR, Lancashire WE, Sanders HK, Carvajal E, Malamud D, Brag GRC, Panek AD (1979) In: Caughey WJ (ed) Biochemical and clinical aspects of oxygen. Academic Press, New York, pp 421–435

    Google Scholar 

  • Messing J (1983) In: Wu R, Grossman L, Moldave K (eds) Methods in enzymology, 101, Academic Press, New York, pp 20–78

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Olesen J, Hahn S, Guarente L (1987) Cell 51:953–961

    Google Scholar 

  • Oudshoorn P, van Steeg H, Swinkels B, Schoppink P, Grivell LA (1987) Eur J Biochem 163:97–103

    Google Scholar 

  • Panzeri L, Philippsen P (1982) EMBO J 1:1605–1611

    Google Scholar 

  • Pfeifer K, Arcangioli B, Guarente L (1987a) Cell 49:9–18

    Google Scholar 

  • Pfeifer K, Prezant T, Guarente L (1987b) Cell 49:19–27

    Google Scholar 

  • Pruijn GJM, Van Miltenburg RT, Claessens JAJ, Van der Vliet PC (1988) J Virol 62:3092–3102

    Google Scholar 

  • Quain DE, Haslam JM (1979) J Gen Microbiol 111:343–351

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1986) Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sousa R, Arcangioli B (1989) EMBO J 8:1801–1808

    Google Scholar 

  • Thorsness M, Schafer W, D'Ari L, Rine J (1989) Mol Cell Biol 9:5702–5712

    Google Scholar 

  • Trawick JD, Wright RM, Poyton RO (1989) J Biol Chem 264:7005–7008

    Google Scholar 

  • Trueblood CE, Wright RM, Poyton RO (1988) Mol Cell Biol 8:4537–4540

    Google Scholar 

  • Winkler H, Adam G, Mattes E, Schanz M, Hartig A, Ruis H (1988) EMBO J 7:1799–1804

    Google Scholar 

  • Wright RM, Trawick JD, Trueblood CE, Patterson TE, Poyton RO (1987) In: Papa S, Chance B, Ernster L (eds) Cytochrome systems: molecular biology and bioenergetics, Plenum Press, New York, pp 49–56

    Google Scholar 

  • Zitomer RS, Montgomery DL, Nichols DL, Hall BD (1979) Proc Nalt Acad Sci USA 76:3627–3631

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. J. Schweyen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorsman, J.C., Grivell, L.A. Expression of the gene encoding subunit II of yeast QH2: Cytochrome c oxidoreductase is regulated by multiple factors. Curr Genet 17, 459–464 (1990). https://doi.org/10.1007/BF00313072

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00313072

Key words

Navigation