Skip to main content
Log in

Chalcides and pnictides of group VIII transition metals: Far-infrared spectroscopic studies on compounds MX 2, MXY, and MY 2 with pyrite, marcasite, and arsenopyrite structure

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The far-infrared (FIR) spectra of pyrites, marcasites and loellingites, and arsenopyrites of the type MX 2, MY 2, and MXY with M=Fe, Co, Ru, Rh, Os, Ir X=S, Se, Te, and Y=P, As, and Sb have been studied, including group theoretical treatment of the phonon modes. The internal Y - Y and X - Y stretching modes, infrared (IR) allowed only in the case of the arsenopyrites, have been found to be in the range 440–490, 470–510, 450–490, 430–450 and 400–420 cm−1 for MP 2, MPS, MPSe, MAsS, and MSbS type compounds, respectively. From the obtained spectra intensity weighted mean phonon frequencies, i.e. central frequencies as defined by Plendl (1961), and mass weighted ones have been calculated and interpreted in terms of the strength of the MX and MY bonds, especially comparing 3d, 4d, and 5d transition metal compounds. Method of preparation and X-ray data of the chalcides and pnictides studied are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brostigen G, Kjekshus A (1970) Compounds with the marcasite type crystal structure V. The crystal structures of FeS2, FeTe2, and CoTe2. Acta Chem Scand 24:1925–1940

    Google Scholar 

  • Hahn H, Klingen W (1965) Über einige ternäre Verbindungen vom Typ des Arsenopyrits. Naturwissenschaften 52:494

    Google Scholar 

  • Hulliger F, Mooser E (1965) Semiconductivity in pyrite, marcasite and arsenopyrite phases. J Phys Chem Solids 26:429–433

    Google Scholar 

  • Johnston WD, Miller RC, Damon DH (1965) Electrical properties of some compounds having the pyrite or marcasite structure. J Less Common Metals 8:272–287

    Google Scholar 

  • Kliche G (1980) IR-spektroskopische Untersuchungen an Chalkogeniden und Pnictiden von Übergangsmetallen der 7. und 8. Nebengruppe. Dissertation Universität Siegen

  • Lauwers HA, Herman MA (1974) Study on the force field of pyrite. J Phys Chem Solids 35:1619–1623

    Google Scholar 

  • Lauwers HA, Herman MA (1976) Force field of FeS2 with pyrite structure at zero wave vector. J Phys Chem Solids 37:831–834

    Google Scholar 

  • Lutz HD, Willich P (1975) FIR-Spektren und Schwingungsanalyse von FeS2-Markasit. Z Naturforsch Teil A 30:1458–1461

    Google Scholar 

  • Lutz HD, Willich P, Haeuseler H (1976) Kraftkonstanten-und Normalkoordinatenrechnungen an Übergangsmetall-Dichalkogeniden und -Diphosphiden mit Pyritstrukturen. Z Naturforsch Teil A 31:847–852

    Google Scholar 

  • Lutz HD, Willich P (1977) FIR-Spektren und Schwingungsanalyse von Dichalkogeniden und Diphosphiden des Eisens, Rutheniums, Osmiums und Platins. Z Anorg Allg Chem 428:199–203

    Google Scholar 

  • Lutz HD, Kliche G, Haeuseler H (1981) Far-infrared reflection spectra, optical and dielectric constants, and effective charges of the pyrite type compounds FeS2, MnS2, MnSe2, and MnTe2. Z Naturforsch Teil A 36:184–190

    Google Scholar 

  • Lutz HD, Christian H (1982) Raman and infrared spectra of barium and strontium halide monohydrates, MX2·1H2O (M=Ba, Sr; X=Cl, Br, I). A new interpretation of the frequency shiftings of OH stretching modes in solid hydrates. J Molec Struct 96:61–72

    Google Scholar 

  • Lutz HD, Kliche G (1982) Far-infrared reflection spectra, optical and dielectric constants, effective charges and lattice dynamics of the skutterudites CoP3, CoAs3, and CoSb3. Phys Status Solidi B112:549–557

    Google Scholar 

  • Mallow JV, Freeman AJ, Desclaux JP (1976) Relativistic electron densities and isomer shifts in transition metal ions. Phys Rev B13:1884–1892

    Google Scholar 

  • Müller A, Schmidt KH, Tytko KH, Bouwma J, Jellinek F (1972) Schwingungsspektren (IR und Laser-Raman) und Normalkoordinatenanalyse verschiedener Tetrathio- und Tetraselenometallate der Übergangsmetalle. Spectrochim Acta Part A28:381–391

    Google Scholar 

  • Müller A, Krebs B (1967) Einige Gesetzmäßigkeiten für die Valenzkraftkonstanten tetraedrischer Oxoanionen vom Typ XO 4n− mit d°-Konfiguration des Zentralatoms. Spectrochim Acta Part A 23:1591–1595

    Google Scholar 

  • Plendl JN (1961) Some new interrelations in the properties of solids based on anharmonic cohesive forces. Phys Rev 123:1172–1180

    Google Scholar 

  • Povarennykh AS, Solntseva LS, Solntsev BP (1973) Infrared absorption spectra of main copper and iron sulphides. Konst Svoistva Miner 7:81–92

    Google Scholar 

  • Pyykkö P (1978) Relativistic quantum chemistry. Adv Quantum Chem 11:353–409

    Google Scholar 

  • Soong R, Farmer VC (1978) The identification of sulphide minerals by infra-red spectroscopy. Mineral Mag 42:277, M17–M20

    Google Scholar 

  • Tossell JA, Vaughan DJ, Burdett JK (1981) Pyrite, marcasite, and arsenopyrite type minerals: Crystal chemical and structural principles. Phys Chem Minerals 7:177–184

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This is contribution XXXI of a series of papers on lattice vibration spectra. About XXX cf. Lutz and Christian 1982

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutz, H.D., Schneider, G. & Kliche, G. Chalcides and pnictides of group VIII transition metals: Far-infrared spectroscopic studies on compounds MX 2, MXY, and MY 2 with pyrite, marcasite, and arsenopyrite structure. Phys Chem Minerals 9, 109–114 (1983). https://doi.org/10.1007/BF00308366

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00308366

Keywords

Navigation