Skip to main content
Log in

Patterns of cellular proliferation and migration in the developing tectum mesencephali of the frog Rana temporaria and the salamander Pleurodeles waltl

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The development of the tectum mesencephali was studied in the frog Rana temporaria and the salamander Pleurodeles waltl by means of nuclear staining and by labeling of cells with bromodeoxyuridine (BrdU). The general spatial and temporal pattern of cell proliferation and cell migration is the same in both species, despite drastic differences in overall tectal morphology. However, the salamander species differs from the frog species by (1) a generally lower cell proliferation rate, (2) a reduction in the activity of the lateral proliferation zone, and (3) a reduction in the formation of superficial cellular layers. Because point (3) affects processes that occur late in ontogeny, our experiments provide evidence that the simple morphology of the tectum of Pleurodeles waltl, compared with the multilayered tectum of Rana, is a consequence of a paedomorphic alteration of the ancestral developmental pattern of the amphibian tectum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams JC (1981) Heavy metal intensification of DAB-based HRP reaction product. J Histochem Cytochem 29:775

    Google Scholar 

  • Alberch P, Gould SJ, Oster GF, Wake DB (1979) Size and shape in ontogeny and phylogeny. Palaeobiology 5:296–317

    Google Scholar 

  • Angevine JB Jr, Sidman RL (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192:766–768

    Google Scholar 

  • Bullock TH (1984) The future of comparative neurology. Am Zool 24:693–700

    Google Scholar 

  • Cavalier-Smith T (1978) Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the C-value paradox. J Cell Sci 34:247–278

    Google Scholar 

  • Cavalier-Smith T (1982) Skeletal DNA and the evolution of genome size. Annu Rev Biophys Bioeng 11:273–278

    Google Scholar 

  • Constantine-Paton M (1988) A neural pattern unfolding: properties of retinotectal differentiation in frog tadpoles. In: Kollros JJ (ed) Developmental neurobiology of the frog. Liss, New York, pp 231–253

    Google Scholar 

  • Dann JF, Beazley LD (1988) Development of the optic tecta in the frog Limnodynastes dorsalis. Dev Brain Res 44:21–35

    Google Scholar 

  • Gadisseux JF, Kadhim HJ, Aguilar P van den Bosch de, Caviness VS, Evrad P (1990) Neuron migration within the radial glial system of the developing murine cerebellum: an electron microscopic autoradiographic analysis. Dev Brain Res 52:39–56

    Google Scholar 

  • Gallien L, Durocher M (1957) Table chronologique du développement chez Pleurodeles waltl. Michah Bull Biol 91:97–114

    Google Scholar 

  • Gona AG, Uray NJ, Hauser KF (1988) Neurogenesis in the frog cerebellum. In: Kollros JJ (ed) Developmental neurobiology of the frog. Liss, New York, pp 255–276

    Google Scholar 

  • Gosner KL (1960) A simplified table for staging neuron embryos and larvae with notes on identification. Herpetologica 16:183–190

    Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Belknap-Harvard University Press, Cambridge, Mass

    Google Scholar 

  • Hally MK, Rasch EM, Mainwaring HR, Bruce RC (1986) Cytophotometric evidence of variation in genome size of desmognathine salamanders. Histochemistry 85:185–192

    Google Scholar 

  • Hayashi Y, Koike M, Matsutani M, Hoshino T (1988) Effects of fixation time and enzymatic digestion on immunohistochemical demonstration of bromodeoxyuridine in formalin-fixed, paraffin-embedded tissue. J Histochem Cytochem 36:511–514

    Google Scholar 

  • Horner HA, MacGregor H (1983) C-value and cell volume: their significance in the evolution and development of amphibians. J Cell Sci 63:135–146

    Google Scholar 

  • Hsu S, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between the ABC and unlabelled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    Google Scholar 

  • Kollros JJ (1988) Toward an understanding of tectal development in frogs. In: Kollros JJ (ed) Developmental neurobiology of the frog, Liss, New York, pp 207–229

    Google Scholar 

  • Löfberg J, Perris R, Epperlein HJ (1989) Timing in the regulation of neural crest cell migration: retarded “maturation” of regional extracellular matrix inhibits pigment cell migration in embryos of the white axolotl mutant. Dev Biol 131:168–181

    Google Scholar 

  • Mansour-Robaey S, Pinganaud G (1990) Quantitative and morphological study of cell proliferation during morphogenesis in the trout visual system. J Hirnforsch 31:495–504

    Google Scholar 

  • Messenger NJ, Warner A (1989) The appearance of neural and glial cell markers during early development of the nervous system in the amphibian embryo. Development 107:43–54

    Google Scholar 

  • Morescalchi (1990) Cytogenetics and the problem of lissamphibian relationships. In: Olmo E (ed) Cytogenetics of amphibians and reptiles. Birkhäuser, Basel, pp 1–19

    Google Scholar 

  • Naujoks-Manteuffel C, Manteuffel G (1988) Origins of descending projections to the medulla oblongata and rostral medulla spinalis in the urodele Salamandra salamandra (Amphibia). J Comp Neurol 273:187–206

    Google Scholar 

  • Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin). North Holland, Amsterdam

    Google Scholar 

  • Northcutt RG (1987) Lungfish neural characters and their bearing on sarcopterygian phylogeny. J Morphol 1:277–297

    Google Scholar 

  • Olmo E (1983) Nucleotype and cell size in vertebrates: a review. Basic Appl Histochem 27:227–256

    Google Scholar 

  • Potter HD (1969) Structural characteristics of cell and fiber populations in the optic tectum of the frog (Rana catesbeiana). J Comp Neurol 136:203–232

    Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–84

    Google Scholar 

  • Romeis B (1968) Mikroskopische Technik. Oldenbourg, Munich

    Google Scholar 

  • Romer AS (1970) The vertebrate body, 4th edn. Saunders, Philadelphia

    Google Scholar 

  • Roth G (1987) Visual behavior in salamanders. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Roth G, Naujoks-Manteuffel C, Grunwald W (1990) Cytoarchitecture of the tectum mesencephali in salamanders: a Golgi and HRP study. J Comp Neurol 278:181–194

    Google Scholar 

  • Roth G, Dicke U, Nishikawa K (1992) How do ontogeny, morphology, and physiology of sensory systems constrain and direct the evolution of amphibians? Am Nat 139:S105–S124

    Google Scholar 

  • Roth G, Nishikawa K, Naujoks-Manteuffel C, Schmidt A, Wake DB (1993) Paedomorphosis and simplification in the nervous system of salamanders. Brain Behavior Evolution (in press)

  • Schmidt A, Wake MH (1991) Phylogenetic changes in the morphological differentiation of the caecilian tectum mesencephali. In: Elsner N, Penzlin H (eds) Synapse-transmission-modulation. Proceedings of the 19th Göttingen Neurobiology Conference. Thieme, Stuttgart, p 335

    Google Scholar 

  • Sessions SK, Larson A (1987) Developmental correlates of genome size in phlethodontid salamanders and their implications for genome evolution. Evolution 41:1239–1251

    Google Scholar 

  • Shimada M, Langman J (1970) Cell proliferation, migration and differentiation in the cerebral cortex of the golden hamster. J Comp Neurol 139:227–244

    Google Scholar 

  • Straznicky K, Gaze RM (1972) The development of the tectum in Xenopus laevis: an autoradiographic study. J Embryol Exp Morphol 28:87–115

    Google Scholar 

  • Szarski H (1976) Cell size and nuclear content in vertebrates. Int Rev Cytol 44:93–111

    Google Scholar 

  • Szarski H (1983) Cell size and the concept of wasteful and frugal evolutionary strategies. J Theor Biol 105:201–209

    Google Scholar 

  • Székely G, Lázár G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 407–434

    Google Scholar 

  • Vanegas H, Ebbesson SOE, Laufer M (1984) Morphological aspects of the teleostean optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 93–120

    Google Scholar 

  • Wake DB (1966) Comparative osteology and evolution of the lungless salamanders, family Plethodontidae. Mem So Calif Acad Sci 4:1–111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, A., Roth, G. Patterns of cellular proliferation and migration in the developing tectum mesencephali of the frog Rana temporaria and the salamander Pleurodeles waltl . Cell Tissue Res 272, 273–287 (1993). https://doi.org/10.1007/BF00302733

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00302733

Key words

Navigation