Skip to main content
Log in

Magmatic evolution of Pacaya and Cerro Chiquito volcanological complex, Guatemala

  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Four major phases are distinguished during the building of the Pacaya volcanological complex (Guatemala): (1) the ‘ancestral volcano’, now much eroded, covered by younger deposits and battered by faulting and landslides; (2) the initial cone made up of large lava flows and dated at about 0.5 Ma; (3) andesito-dacitic domes (Cerro Chiquito dome and others) emplaced during an extrusive phase at about 0.16 Ma; and (4) the active Pacaya volcano. Lavas of phases 2 and 4 are basalts and basaltic andesites with almost the same major and trace element compositions. Classical enrichment in LILE and depletion in HFSE are observed. Phase 3 domes show magma-mingling features. The dacitic host rock includes basaltic andestic enclaves, 20 to 30% in volume. According to geochemical and mineralogic data (Mg/Fe ratios of basic minerals higher in dacite, groundmass glasses sodic in dacite and potassic in basaltic andesite), the basaltic andesites and dacites of phase 3 cannot be related by a simple fractional crystallization process. The existence of such differences suggests that magma mingling/mixing processes were involved by a connection between the two magma chambers prior to the extrusion of the andesito-dacitic domes. However, some trace element data clearly suggest that fractional crystallization played a significant role in the differentiation of these lavas. Remelting of amphibole-bearing cumulates from the dacite may also have played a role in the basaltic andesitic liquid genesis. Thermodynamical parameters of each liquid are contrasted. The basaltic andesitic magma, at a high temperature (1037°C) and in relatively small amounts, is embayed in the cooler (905° C) dacitic magma. The former liquid, denser (2.72) and less viscous (103.31 poises for free crystal liquid) may crystallize while the latter, lighter (2.60) and more viscous (104.46 poises), remains still liquid. Isotopic data (0.70383<87Sr/86Sr <0.70400; 0.512785<143Nd/144Nd<0.512908; 18.61<206Pb/204Pb<18.66; 15.56<207Pb/204Pb <15.58; 38.30<208Pb/204Pb<38.40) indicate that all the lavas (from Pacaya as well as from Cerro Chiquito) are cogenetic and derive from the same mantle source. Sr, Nd and Pb isotope ratios are similar to those of OIBs. (230Th/232Th) activity ratios on two historical lavas are respectively 1.2 and 1.3. The Th excess is similar to that of other calcalkaline volcanoes emplaced on a continental crust. These lavas evolved, possibly in separate magma chambers, through processes of fractional crystallization and magma mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allègre CJ, Condomines M (1982) Basalt genesis and mantle structure studied through Th isotopic geochemistry. Nature 299:21–24

    Google Scholar 

  • Anderson AT (1979) Water in some hypersthenic magmas. J Geol 87:509–531

    Google Scholar 

  • Bardintzeff JM (1983) Les verres et les magmas de l'éruption de 1979 de la Soufrière de Saint-Vincent (Antilles). Bull Soc Géol France 7, XXV, 6:811–818

    Google Scholar 

  • Bardintzeff JM (1985a) Les nuées ardentes: pétrogenèse et volcanologie. Thèse Doctorat d'état, Université Paris-Sud, Orsay, pp 1–393

  • Bardintzeff JM (1985b) Two (andesitic and dacitic) magmas coexistence in Cerro Chiquito (Guatemala). Third European Union of Geosciences meeting, Strasbourg, Terra Cognita 5, 2–3:321

    Google Scholar 

  • Bardintzeff JM (1991) Volcanologie. Masson, Paris, pp 1–256

    Google Scholar 

  • Bardintzeff JM, Bonin B (1987) The amphibole effect: a possible mechanism for triggering explosive eruptions. J Volcanol Geoth Res 33:255–262

    Google Scholar 

  • Bottinga Y, Weill DF (1970) Densities of liquid silicate systems calculated from practical molar volumes of oxide components. Am J Sci 269:169–182

    Google Scholar 

  • Brown L, Klein J, Middleton R, Sacks IS, Tera F (1982) 10Be in island-arc volcanoes and implications for subduction. Nature 299:718–720

    Google Scholar 

  • Buddington AF, Lindsley DH (1964) Iron titanium oxide menerals and synthetic equivalents. J Petrol 5:310–357

    Google Scholar 

  • Burnham CW (1979) The importance of volatile constituents. In: Yoder HS, Jr (ed) The evolution of the igneous rocks. Princeton University Press, pp 439–482

  • Carr MJ (1984) Symmetrical and segmented variation of physical and geochemical characteristics of the Central American volcanic front. J Volcanol Geoth Res 20:231–252

    Google Scholar 

  • Carr MJ, Feigenson MD, Bennett EA (1990) Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American are. Contrib Mineral Petrol 105:369–380

    Google Scholar 

  • Carr MJ, Rose WI, Mayfield DG (1979) Potassium content of lavas and depth to the seismic zone in Central America. J Volcanol Geoth Res 5:387–401

    Google Scholar 

  • Carr MJ, Rose WI, Stoiber RE (1982) Central America. In: Thorpe RS (ed) Andesites, Wiley & Sons, pp 149–166

  • Chesner CA, Rose WI (1984) Geochemistry and evolution of the Fuego volcanic complex, Guatemala. J Volcanol Geoth Res 21:25–44

    Google Scholar 

  • Chow TJ, Patterson CC (1962) The occurrence and significance of lead isotopes in pelagic sediments. Geochim Cosmochim Acta 26:263–308

    Google Scholar 

  • Condomines M, Hémond Ch, Allègre CJ (1988) U-Th-Ra radioactive disequilibrium and magmatic processes. Earth Planet Sci Lett 90:243–262

    Google Scholar 

  • Davidson JP, Ferguson KM, Colucci MT, Dungan MA (1988) The origin and evolution of magmas from the San Pedro-Pellado volcanic complex, S Chile: multicomponent sources and open system evolution. Contrib Mineral Petrol 100:429–445

    Google Scholar 

  • Deniel C, Bardintzeff JM (1989) Pacaya volcanological complex (Guatemala): petrological and geochemical evolution. Fifth European Union of Geosciences meeting, Strasbourg, Terra Abstracts 1, 1:323

    Google Scholar 

  • Dietrich VJ, Mercolli I, Oberhänsli R (1988) Dazite, high — alumina — basalte und andesite als produkte amphiboldominierter differentiation (Aegina und Methana, Agäischer Inselbogen). Scheiz Mineral Petrogr Mitt 68:21–39

    Google Scholar 

  • Eggers AA (1972) The geology and petrology of the Amatitlan quadrangle, Guatemala. Ph. D. thesis, Hanover, N.H., Dart-mouth College, pp 1–221

  • Eggers AA (1975) Geologic map of Amatitlan, Guatemala, 1 50000o. Instituto Geografico Nacional, Guatemala

    Google Scholar 

  • Eichelberger JC, McGetchin TR (1974) Petrogenesis of the 1973 Pacaya lavas, Guatemala. Int. Symp. on Volcanology, IAV-CEI: 1–15

  • Feigenson MD, Carr MJ (1986) Positively correlated Nd and Sr isotope ratios of lavas from the Central American volcanic front. Geology 14:79–82

    Google Scholar 

  • Francis PW, Moorbath S, Thorpe RS (1977) Strontium isotope data for recent andesites in Ecuador and North Chile. Earth Planet Sci Lett 37:197–202

    Google Scholar 

  • Fultz LA (1979) Sr isotopic determinations of Guatemalan basalts. MS Thesis, Michigan Technological Univ, Houghton, Michigan, pp 1–52

  • Gill J (1981) Orogenic andesites and plate tectonics. Springer, Berlin, pp 1–390

    Google Scholar 

  • Gill JB, Williams RW (1990) Th isotope and U-series studies in subduction-related volcanic rocks. Geochim Cosmochim Acta 54, 5:1427–1442

    Google Scholar 

  • Grant NK, Rose WI, Fultz LA (1984) Correlated Sr isotope and geochemical variations in basalts and basaltic andesites from Guatemala. In: Harmon RS, Barreiro BA (eds) Andean magmatism, chemical and isotopic constraints. Am Geophys Union Monograph, pp 139–149

  • hawkesworth CJ, Norry MJ, Roddick JC, Baker PE, Francis PW, Thorpe RS (1979) 143Nd/144Nd, 87Sr/86Sr and incompatible element variations in calcalkaline andesites and plateau lavas from South America. Earth Planet Sci Lett 42:45–57

    Google Scholar 

  • Hémond Ch (1986) Géochimie ísotopique du Th et du Sr dans la série tholéïtique d'Islande et dans des séries calcoalcalines diverses. Thèse Doctorat 3c cycle, Univ Paris 7, pp 1–151

  • Hickey-Vargas R, Moreno Roa H, Lopez Escobar L, Frey FA (1989) Geochemical variations in Andean basaltic and silicic lavas from the Villarica-Lanin volcanic chain (39.5o S): an evaluation of source heterogeneity, fractional crystallization and crustal assimilation. Contrib Mineral Petrol 103:361–386

    Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to are magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98:455–489

    Google Scholar 

  • Kudo AM, Weill DF (1970) An igneous plagioclase thermometer. Contrib Mineral Petrol 25:52–65

    Google Scholar 

  • Kushiro I (1978) Density and viscosity of hydrous calcalkalic andesite magma at high pressure. Carnegie Inst Washington Year Book 77:675–677

    Google Scholar 

  • Leake BE (1978) Nomenclature of amphiboles. Bull Mineral 101:453–467

    Google Scholar 

  • Leeman WP (1983) The influence of crustal structure on compositions of subduction-related magmas. J Volcanol Geoth Res 18:561–588

    Google Scholar 

  • Leemann WP, Scheidegger KF (1977) Olivine liquid distribution coefficients and a test for crystal-liquid equilibrium. Earth Planet Sci Lett 35:245–257

    Google Scholar 

  • Marsh BD (1981) On the crystallinity, probability of occurrence and rheology of lava. Contrib Mineral Petrol 78:85–98

    Google Scholar 

  • McBirney AR, Murase T (1984) Rheological properties of magmas. Ann Rev Earth Planet Sci 12:337–357

    Google Scholar 

  • Meyer-Abich H (1956) Los volcanes activos de Guatemala y El Salvador. Anal Serv Geol Nac, El Salvador, boletin 3:1–102

    Google Scholar 

  • Moorbath S, Thorpe RS, Gibson IL (1978) Strontium isotope evidence for petrogenesis of Mexican andesites. Nature 271:437–439

    Google Scholar 

  • Mooser F, Meyer-Abich H, McBirney AR (1958) Catalogue of the active volcanoes of the world including solfatara fields, part VI, Central America. Int Volcanol Assoc, Naples, Italy, pp 1–146

    Google Scholar 

  • Morris JD, Hart SR (1983) Isotopic and incompatible element constraints on the genesis of island arc volcanics from Cold Bay and Amak Island, Aleutians and implications for mantle structure. Geochim Cosmochim Acta 47:2015–2033

    Google Scholar 

  • Newhall CG (1987) Geology of the Lake Atitlan region, western Guatemala. J Volcanot Geoth Res 33:23–55

    Google Scholar 

  • Oberhänsli R, Mercolli I, Dietrich VJ (1985) The amphibole-andesite connection. Third European Union of Geosciences meeting, Strasbourg, Terra Cognita, 5, 2–3:213

    Google Scholar 

  • Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Orpington (London), and Birkhauser Boston, Cambridge, Massachusetts, pp 230–249

    Google Scholar 

  • Pushkar P (1968) Strontium isotope ratios in volcanic rocks of three island arc areas. J Geophys Res 73, 8:2701–2714

    Google Scholar 

  • Reagan MK, Gill JB (1989) Coexisting calcalkaline and high-niobium basalts from Turrialba volcano, Costa Rica: implications for residual titanates in arc magma sources. J Geophys Res 94, B4:4619–4633

    Google Scholar 

  • Roeder PL (1974) Activity of iron and olivine solubility in basaltic liquids. Earth Planet Sci Lett 23:397–410

    Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289

    Google Scholar 

  • Rose WI (1987) Santa Maria, Guatemala: bimodal soda-rich calcalkalic stratovolcano. J Volcanol Geoth Res 33:109–129

    Google Scholar 

  • Rose WI, Grant NK, Hahn GA, Lange IM, Powel JL, Easter J, Degraff JM (1977) The evolution of Santa Maria volcano, Guatemala. J Geol 85:63–87

    Google Scholar 

  • Rose WI, Penfield GT, Drexler JW, Larson PB (1980) Geochemistry of the andesite flank lavas of three composite cones within the Atitlan cauldron, Guatemala. Bull Volcanol 43–1:131–153

    Google Scholar 

  • Shaw HR (1972) Viscosities of magmatic silicate liquids: an empirical method of prediction. Am J Sci 272:870–893

    Google Scholar 

  • Spencer KJ, Lindsley DH (1981) A solution model for coexisting iron-titanium oxides. Am Mineral 66:1189–1201

    Google Scholar 

  • Sun SS, Nesbitt RW (1977) Chemical heterogeneity of the Archean mantle, composition of the earth and mantle evolution. Earth Planet Sci Lett 35:429–44

    Google Scholar 

  • Tera F, Brown L, Morris J, Sacks IS, Klein J, Middleton R (1986) Sediment incorporation in island-are magmas: inferences from 10Be. Geochim Cosmochim Acta 50:535–550

    Google Scholar 

  • Thorpe RS, Francis PW, Moorbath S (1979) Strontium isotope evidence for petrogenesis of Central American andesites. Nature 277:44–45

    Google Scholar 

  • Treuil M, Varet J (1973) Critères volcanologiques, pétrologiques et géochimiques de la genèse et de la différenciation des magmas basaltiques: exemple de l'Afar. Bull Soc Géol Fr 7, XV, 5–6:506–540

    Google Scholar 

  • Unruh DM, Tatsumoto M (1976) Lead isotopic composition and uranium, thorium and lead concentrations in sediments and basalts from the Nazca plate. In: Yeats RS, Hart SR (eds) Initial reports of the deep sea drilling project, Leg 34. US Government Printing Office, Washington DC, pp 341–347

    Google Scholar 

  • Verma SP (1983) Magma genesis and magma chamber processes at Los Humeros caldera, Mexico-Nd and Sr isotope data. Nature 301:52–55

    Google Scholar 

  • Whitford DJ, Bloomfield K (1976) Geochemistry of late Cenozoic volcanic rocks from the Nevado de Toluca area, Mexico. Carnegie Inst Washington Year Book 75:207–213

    Google Scholar 

  • Woodruff LG, Rose WI, Rigot W (1979) Contrasting fractionation patterns for sequential magmas from two calcalkaline volcanoes in Central America. J Volcanol Geoth Res 6:217–240

    Google Scholar 

  • Wright TL, Doherty PC (1970) A linear programming and least squares computer method for solving petrologic mixing problems. Geol Soc Am Bull 81:1995–2008

    Google Scholar 

  • Wunderman RL, Rose WI (1984) Amatitlan, an actively resurging cauldron 10 km south of Guatemala City. J Geophys Res 89, B10:8525–8539

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardintzeff, JM., Deniel, C. Magmatic evolution of Pacaya and Cerro Chiquito volcanological complex, Guatemala. Bull Volcanol 54, 267–283 (1992). https://doi.org/10.1007/BF00301482

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00301482

Keywords

Navigation